Cyclin A/Cdk1 promotes chromosome alignment and timely mitotic progression.

IF 3.1 3区 生物学 Q3 CELL BIOLOGY
Molecular Biology of the Cell Pub Date : 2024-11-01 Epub Date: 2024-10-02 DOI:10.1091/mbc.E23-12-0479
Sarah Y Valles, Shrea Bural, Kristina M Godek, Duane A Compton
{"title":"Cyclin A/Cdk1 promotes chromosome alignment and timely mitotic progression.","authors":"Sarah Y Valles, Shrea Bural, Kristina M Godek, Duane A Compton","doi":"10.1091/mbc.E23-12-0479","DOIUrl":null,"url":null,"abstract":"<p><p>To ensure genomic fidelity, a series of spatially and temporally coordinated events is executed during prometaphase of mitosis, including bipolar spindle formation, chromosome attachment to spindle microtubules at kinetochores, the correction of erroneous kinetochore-microtubule (k-MT) attachments, and chromosome congression to the spindle equator. Cyclin A/Cdk1 kinase plays a key role in destabilizing k-MT attachments during prometaphase to promote correction of erroneous k-MT attachments. However, it is unknown whether Cyclin A/Cdk1 kinase regulates other events during prometaphase. Here, we investigate additional roles of Cyclin A/Cdk1 in prometaphase by using an siRNA knockdown strategy to deplete endogenous Cyclin A from human cells. We find that depleting Cyclin A significantly extends mitotic duration, specifically prometaphase, because chromosome alignment is delayed. Unaligned chromosomes display erroneous monotelic, syntelic, or lateral k-MT attachments suggesting that bioriented k-MT attachment formation is delayed in the absence of Cyclin A. Mechanistically, chromosome alignment is likely impaired because the localization of the kinetochore proteins BUB1 kinase, KNL1, and MPS1 kinase are reduced in Cyclin A-depleted cells. Moreover, we find that Cyclin A promotes BUB1 kinetochore localization independently of its role in destabilizing k-MT attachments. Thus, Cyclin A/Cdk1 facilitates chromosome alignment during prometaphase to support timely mitotic progression.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"ar141"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617097/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E23-12-0479","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To ensure genomic fidelity, a series of spatially and temporally coordinated events is executed during prometaphase of mitosis, including bipolar spindle formation, chromosome attachment to spindle microtubules at kinetochores, the correction of erroneous kinetochore-microtubule (k-MT) attachments, and chromosome congression to the spindle equator. Cyclin A/Cdk1 kinase plays a key role in destabilizing k-MT attachments during prometaphase to promote correction of erroneous k-MT attachments. However, it is unknown whether Cyclin A/Cdk1 kinase regulates other events during prometaphase. Here, we investigate additional roles of Cyclin A/Cdk1 in prometaphase by using an siRNA knockdown strategy to deplete endogenous Cyclin A from human cells. We find that depleting Cyclin A significantly extends mitotic duration, specifically prometaphase, because chromosome alignment is delayed. Unaligned chromosomes display erroneous monotelic, syntelic, or lateral k-MT attachments suggesting that bioriented k-MT attachment formation is delayed in the absence of Cyclin A. Mechanistically, chromosome alignment is likely impaired because the localization of the kinetochore proteins BUB1 kinase, KNL1, and MPS1 kinase are reduced in Cyclin A-depleted cells. Moreover, we find that Cyclin A promotes BUB1 kinetochore localization independently of its role in destabilizing k-MT attachments. Thus, Cyclin A/Cdk1 facilitates chromosome alignment during prometaphase to support timely mitotic progression.

Cyclin A/Cdk1 可促进染色体排列和有丝分裂的及时进行。
为了确保基因组的保真度,在有丝分裂的后期要执行一系列在空间和时间上协调的事件,包括双极纺锤体的形成、染色体附着到动点处的纺锤体微管、纠正错误的动点-微管(k-MT)附着以及染色体向纺锤体赤道的聚集。细胞周期蛋白 A/Cdk1激酶在原叶期破坏k-MT附着的稳定性以促进纠正错误的k-MT附着方面发挥着关键作用。然而,目前还不清楚细胞周期蛋白A/Cdk1激酶是否调控原核期的其他事件。在这里,我们通过使用 siRNA 敲除策略来清除人体细胞中的内源性 Cyclin A,从而研究 Cyclin A/Cdk1 在原分裂期中的其他作用。我们发现,消耗 Cyclin A 能显著延长有丝分裂的持续时间,特别是原分裂期,因为染色体排列会延迟。从机理上讲,染色体排列受阻可能是因为在 Cyclin A 缺失的细胞中,动点核蛋白 BUB1 激酶、KNL1 和 MPS1 激酶的定位减少。此外,我们还发现 Cyclin A 可促进 BUB1 的动点定位,而与它在破坏 k-MT 附着稳定性方面的作用无关。因此,细胞周期蛋白 A/Cdk1有助于染色体在原核期排列,从而支持有丝分裂的及时进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biology of the Cell
Molecular Biology of the Cell 生物-细胞生物学
CiteScore
6.00
自引率
6.10%
发文量
402
审稿时长
2 months
期刊介绍: MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信