Darshana Kapri, Amartya Pradhan, Ratna Mahathi Vuruputuri, Vidita A Vaidya
{"title":"Sex differences in the influence of adult-onset hypothyroidism on hippocampal progenitor survival and neuronal differentiation in mice.","authors":"Darshana Kapri, Amartya Pradhan, Ratna Mahathi Vuruputuri, Vidita A Vaidya","doi":"10.1111/jne.13453","DOIUrl":null,"url":null,"abstract":"<p><p>The ongoing production of newborn neurons in the adult hippocampus is reported to be sensitive to perturbations of thyroid hormone signaling, in male rats and mice. Here, we examined whether the neurogenic changes evoked by adult-onset hypothyroidism exhibit sex differences, using male and female C57BL/6N mice. We assessed the impact of goitrogen-induced, adult-onset hypothyroidism on the postmitotic survival and differentiation of hippocampal progenitors in male and female mice. Adult-onset hypothyroidism evoked a significant decline in the postmitotic survival and neuronal differentiation of adult-born progenitors within the dentate gyrus hippocampal subfield of male, but not female, mice. We observed a significant decrease in the number of immature neurons within the hippocampi of adult-onset hypothyroid male mice, whereas adult-onset hypothyroidism evoked by goitrogens using the same treatment paradigms did not evoke any change in immature neuron number in female mice. Gene expression analysis within the hippocampi of euthyroid male and female mice revealed sex-dependent, differential expression of thyroid hormone receptor genes, as well as genes linked to thyroid hormone metabolism and transport. Collectively, our findings highlight sex differences in the influence of goitrogen-induced, adult-onset hypothyroidism on hippocampal neurogenesis, with male, but not female, mice exhibiting a decline in postmitotic hippocampal progenitor survival and neuronal differentiation. These findings underscore the importance of sex as a vital variable when considering the impact of thyroid hormone signaling on the adult hippocampal neurogenic niche.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jne.13453","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The ongoing production of newborn neurons in the adult hippocampus is reported to be sensitive to perturbations of thyroid hormone signaling, in male rats and mice. Here, we examined whether the neurogenic changes evoked by adult-onset hypothyroidism exhibit sex differences, using male and female C57BL/6N mice. We assessed the impact of goitrogen-induced, adult-onset hypothyroidism on the postmitotic survival and differentiation of hippocampal progenitors in male and female mice. Adult-onset hypothyroidism evoked a significant decline in the postmitotic survival and neuronal differentiation of adult-born progenitors within the dentate gyrus hippocampal subfield of male, but not female, mice. We observed a significant decrease in the number of immature neurons within the hippocampi of adult-onset hypothyroid male mice, whereas adult-onset hypothyroidism evoked by goitrogens using the same treatment paradigms did not evoke any change in immature neuron number in female mice. Gene expression analysis within the hippocampi of euthyroid male and female mice revealed sex-dependent, differential expression of thyroid hormone receptor genes, as well as genes linked to thyroid hormone metabolism and transport. Collectively, our findings highlight sex differences in the influence of goitrogen-induced, adult-onset hypothyroidism on hippocampal neurogenesis, with male, but not female, mice exhibiting a decline in postmitotic hippocampal progenitor survival and neuronal differentiation. These findings underscore the importance of sex as a vital variable when considering the impact of thyroid hormone signaling on the adult hippocampal neurogenic niche.