Vyctoria Malayhka de Abreu Góes Pereira, Juliana Schons Gularte, Meriane Demoliner, Mariana Soares da Silva, Viviane Girardi, Micheli Filippi, Julia Frohlich, Pietra Fink, Alana Witt Hansen, Helena Lage Ferreira, Babak Afrough, Angelika Kritz-Wilson, Fernando Rosado Spilki
{"title":"Influenza outbreak during the surge of SARS-CoV-2 omicron in a metropolitan area from southern Brazil: genomic surveillance","authors":"Vyctoria Malayhka de Abreu Góes Pereira, Juliana Schons Gularte, Meriane Demoliner, Mariana Soares da Silva, Viviane Girardi, Micheli Filippi, Julia Frohlich, Pietra Fink, Alana Witt Hansen, Helena Lage Ferreira, Babak Afrough, Angelika Kritz-Wilson, Fernando Rosado Spilki","doi":"10.1002/jmv.29944","DOIUrl":null,"url":null,"abstract":"<p>Influenza circulation was significantly affected in 2020–21 by the COVID-19 pandemic. During this time, few influenza cases were recorded. However, in the summer of 2021–22, an increase in atypical influenza cases was observed, leading to the resurgence of influenza in the southernmost state of Brazil, Rio Grande do Sul (RS). The present study aimed to identify the circulation of FLUAV, FLUBV and SARS-CoV-2 and characterize the influenza genomes in respiratory samples using high-throughput sequencing technology (HTS). Respiratory samples (<i>n</i> = 694) from patients in RS were selected between July 2021 and August 2022. The samples were typed using reverse transcriptase real-time PCR (RT-qPCR) and showed 32% (223/694) of the samples to be positive for SARS-CoV-2, 7% for FLUAV (H3) (49/694). FLUBV was not detected. RT-qPCR data also resulted in FLUAV and SARS-CoV-2 co-infections in 1.7% (4/223) of samples tested. Whole genome sequencing of FLUAV produced 15 complete genomes of the H3N2 subtype, phylogenetically classified in the 3C.2a1b.2a.2a.3 subclade and revealing the dominance of viruses in the southern region of Brazil. Mutation analysis identified 72 amino acid substitutions in all genes, highlighting ongoing genetic evolution with potential implications for vaccine effectiveness, viral fitness, and pathogenicity. This study underscores limitations in current surveillance systems, advocating for comprehensive data inclusion to enhance understanding of influenza epidemiology in southern Brazil. These findings contribute valuable insights to inform more effective public health responses and underscore the critical need for continuous genomic surveillance.</p>","PeriodicalId":16354,"journal":{"name":"Journal of Medical Virology","volume":"96 10","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Virology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmv.29944","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Influenza circulation was significantly affected in 2020–21 by the COVID-19 pandemic. During this time, few influenza cases were recorded. However, in the summer of 2021–22, an increase in atypical influenza cases was observed, leading to the resurgence of influenza in the southernmost state of Brazil, Rio Grande do Sul (RS). The present study aimed to identify the circulation of FLUAV, FLUBV and SARS-CoV-2 and characterize the influenza genomes in respiratory samples using high-throughput sequencing technology (HTS). Respiratory samples (n = 694) from patients in RS were selected between July 2021 and August 2022. The samples were typed using reverse transcriptase real-time PCR (RT-qPCR) and showed 32% (223/694) of the samples to be positive for SARS-CoV-2, 7% for FLUAV (H3) (49/694). FLUBV was not detected. RT-qPCR data also resulted in FLUAV and SARS-CoV-2 co-infections in 1.7% (4/223) of samples tested. Whole genome sequencing of FLUAV produced 15 complete genomes of the H3N2 subtype, phylogenetically classified in the 3C.2a1b.2a.2a.3 subclade and revealing the dominance of viruses in the southern region of Brazil. Mutation analysis identified 72 amino acid substitutions in all genes, highlighting ongoing genetic evolution with potential implications for vaccine effectiveness, viral fitness, and pathogenicity. This study underscores limitations in current surveillance systems, advocating for comprehensive data inclusion to enhance understanding of influenza epidemiology in southern Brazil. These findings contribute valuable insights to inform more effective public health responses and underscore the critical need for continuous genomic surveillance.
期刊介绍:
The Journal of Medical Virology focuses on publishing original scientific papers on both basic and applied research related to viruses that affect humans. The journal publishes reports covering a wide range of topics, including the characterization, diagnosis, epidemiology, immunology, and pathogenesis of human virus infections. It also includes studies on virus morphology, genetics, replication, and interactions with host cells.
The intended readership of the journal includes virologists, microbiologists, immunologists, infectious disease specialists, diagnostic laboratory technologists, epidemiologists, hematologists, and cell biologists.
The Journal of Medical Virology is indexed and abstracted in various databases, including Abstracts in Anthropology (Sage), CABI, AgBiotech News & Information, National Agricultural Library, Biological Abstracts, Embase, Global Health, Web of Science, Veterinary Bulletin, and others.