Prediction of vaults in eyes with vertical implantable collamer lens implantation.

IF 2.6 3区 医学 Q2 OPHTHALMOLOGY
Ryuichi Shimada, Satoshi Katagiri, Hiroshi Horiguchi, Tadashi Nakano, Yoshihiro Kitazawa
{"title":"Prediction of vaults in eyes with vertical implantable collamer lens implantation.","authors":"Ryuichi Shimada, Satoshi Katagiri, Hiroshi Horiguchi, Tadashi Nakano, Yoshihiro Kitazawa","doi":"10.1097/j.jcrs.0000000000001556","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To design formulas for predicting postoperative vaults in vertical implantable collamer lens (ICL) implantation and to achieve more precise predictions using machine learning models.</p><p><strong>Design: </strong>Retrospective, observational study.</p><p><strong>Setting: </strong>Eye Clinic Tokyo.</p><p><strong>Methods: </strong>We retrospectively reviewed the medical records of 720 eyes in 408 patients who underwent vertical ICL implantation. The data included age, sex, refractions, anterior segment biometric data, and surgical records. We designed 3 formulas (named V1 to V3 formulas) using multiple linear regression analysis and tested 4 machine learning models.</p><p><strong>Results: </strong>Predicted vaults by V1 to V3 formulas were 444.17 ± 93.83 μm, 444.08 ± 98.64 μm, and 444.27 ± 108.81 μm, with a mean absolute error of 127.97 ± 107.92 μm, 126.41 ± 105.86 μm, and 122.90 ± 103.00 μm, respectively. There were no significant differences in error among the V1 to V3 formulas, despite the fact that the V1 and V2 formulas referred to limited parameters (3 and 4, respectively) and the V3 formula referred to all 12 parameters. 2 of 4 machine learning models-Extreme Gradient Boosting and Random Forest Regressor-showed better performance in predicted vaults: 444.52 ± 120.51 μm and 446.00 ± 102.55 μm, and mean absolute error: 118.31 ± 100.55 μm and 118.63 ± 99.34 μm, respectively.</p><p><strong>Conclusions: </strong>This is the first study to design V1 to V3 formulas for vertical ICL implantation. The V1 and V2 formulas exhibited good performance despite the limited parameters. In addition, 2 of the 4 machine learning models predicted more precise results.</p>","PeriodicalId":15214,"journal":{"name":"Journal of cataract and refractive surgery","volume":" ","pages":"45-52"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cataract and refractive surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/j.jcrs.0000000000001556","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To design formulas for predicting postoperative vaults in vertical implantable collamer lens (ICL) implantation and to achieve more precise predictions using machine learning models.

Design: Retrospective, observational study.

Setting: Eye Clinic Tokyo.

Methods: We retrospectively reviewed the medical records of 720 eyes in 408 patients who underwent vertical ICL implantation. The data included age, sex, refractions, anterior segment biometric data, and surgical records. We designed 3 formulas (named V1 to V3 formulas) using multiple linear regression analysis and tested 4 machine learning models.

Results: Predicted vaults by V1 to V3 formulas were 444.17 ± 93.83 μm, 444.08 ± 98.64 μm, and 444.27 ± 108.81 μm, with a mean absolute error of 127.97 ± 107.92 μm, 126.41 ± 105.86 μm, and 122.90 ± 103.00 μm, respectively. There were no significant differences in error among the V1 to V3 formulas, despite the fact that the V1 and V2 formulas referred to limited parameters (3 and 4, respectively) and the V3 formula referred to all 12 parameters. 2 of 4 machine learning models-Extreme Gradient Boosting and Random Forest Regressor-showed better performance in predicted vaults: 444.52 ± 120.51 μm and 446.00 ± 102.55 μm, and mean absolute error: 118.31 ± 100.55 μm and 118.63 ± 99.34 μm, respectively.

Conclusions: This is the first study to design V1 to V3 formulas for vertical ICL implantation. The V1 and V2 formulas exhibited good performance despite the limited parameters. In addition, 2 of the 4 machine learning models predicted more precise results.

预测垂直植入式准分子晶体眼球的穹窿。
目的:设计用于预测立式可植入角膜接触镜(ICL)植入术后穹窿的公式,并利用机器学习模型实现更精确的预测:设计:回顾性观察研究:XXXX(匿名审查):我们回顾性审查了 408 名接受垂直 ICL 植入术的患者的 720 只眼睛的医疗记录。数据包括年龄、性别、屈光度、眼前节生物测量数据和手术记录。我们利用多元线性回归分析设计了三个公式(命名为 V1-V3 公式),并测试了四个机器学习模型:V1-V3公式预测的穹窿分别为444.17 ± 93.83 μm、444.08 ± 98.64 μm和444.27 ± 108.81 μm,平均绝对误差分别为127.97 ± 107.92、126.41 ± 105.86和122.90 ± 103.00 μm。尽管 V1 和 V2 公式涉及的参数有限(分别为 3 个和 4 个),而 V3 公式涉及全部 12 个参数,但 V1-V3 公式之间的误差没有明显差异。在四个机器学习模型中,XGBoost 和 Random Forest Regressor 这两个模型在预测拱顶方面表现较好:444.52 ± 120.51 和 446.00 ± 102.55 μm,平均绝对误差为 118.31 ± 100.55 和 446.00 ± 102.55 μm:结论:这是首次为垂直 ICL 植入设计 V1-V3 公式的研究。尽管参数有限,但 V1 和 V2 配方表现出了良好的性能。此外,在四个机器学习模型中,有两个模型预测出了更精确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
14.30%
发文量
259
审稿时长
8.5 weeks
期刊介绍: The Journal of Cataract & Refractive Surgery (JCRS), a preeminent peer-reviewed monthly ophthalmology publication, is the official journal of the American Society of Cataract and Refractive Surgery (ASCRS) and the European Society of Cataract and Refractive Surgeons (ESCRS). JCRS publishes high quality articles on all aspects of anterior segment surgery. In addition to original clinical studies, the journal features a consultation section, practical techniques, important cases, and reviews as well as basic science articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信