Investigation of the appropriate thread depth for bioabsorbable screws.

IF 2.4 3区 医学 Q3 BIOPHYSICS
Aorigele Yu, Shinji Imade, Satoshi Furuya, Hiroshi Morii, Daishiro Oka, Koichiro Nakazawa, Kazuma Shiraishi, Toshihiko Kawamura, Yuji Uchio
{"title":"Investigation of the appropriate thread depth for bioabsorbable screws.","authors":"Aorigele Yu, Shinji Imade, Satoshi Furuya, Hiroshi Morii, Daishiro Oka, Koichiro Nakazawa, Kazuma Shiraishi, Toshihiko Kawamura, Yuji Uchio","doi":"10.1016/j.jbiomech.2024.112321","DOIUrl":null,"url":null,"abstract":"<p><p>The relatively low strength of bioabsorbable screws is a critical clinical issue. A shallower thread depth will increase a screw's strength, but the pull-out strength of the screw will decrease proportionally with the thread depth. We sought to provide further clarification of the relationships between (i) the thread depth and the pull-out strength, and (ii) the minor diameter and the shearing and bending strengths in bioabsorbable screws made of uncalcined and unsintered hydroxyapatite particles and poly-L-lactide (u-HA/PLLA). Seven types (thread depth from 0.1-0.7 mm) of screws with a major diameter of 4.5 mm were manufactured. Each screw type's pull-out strength was investigated using simulated bone. A shearing test and three-point bending test were both used to measure the physical strength of the screws. We then analyzed the relationships between the mechanical findings and the thread depth. The relationship between the thread depth and the pull-out strength showed a positive biphasic linear correlation with a boundary at 0.4-mm thread depth. The relationships between the minor diameter and both the shearing and bending strengths showed positive linear correlations within the range of dimensions tested. Within the scope of this study, a 0.4-mm thread depth proved to be an appropriate value that provides sufficient pull-out strength and screw strength for u-HA/PLLA screws with a 4.5-mm major diameter.</p>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiomech.2024.112321","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The relatively low strength of bioabsorbable screws is a critical clinical issue. A shallower thread depth will increase a screw's strength, but the pull-out strength of the screw will decrease proportionally with the thread depth. We sought to provide further clarification of the relationships between (i) the thread depth and the pull-out strength, and (ii) the minor diameter and the shearing and bending strengths in bioabsorbable screws made of uncalcined and unsintered hydroxyapatite particles and poly-L-lactide (u-HA/PLLA). Seven types (thread depth from 0.1-0.7 mm) of screws with a major diameter of 4.5 mm were manufactured. Each screw type's pull-out strength was investigated using simulated bone. A shearing test and three-point bending test were both used to measure the physical strength of the screws. We then analyzed the relationships between the mechanical findings and the thread depth. The relationship between the thread depth and the pull-out strength showed a positive biphasic linear correlation with a boundary at 0.4-mm thread depth. The relationships between the minor diameter and both the shearing and bending strengths showed positive linear correlations within the range of dimensions tested. Within the scope of this study, a 0.4-mm thread depth proved to be an appropriate value that provides sufficient pull-out strength and screw strength for u-HA/PLLA screws with a 4.5-mm major diameter.

研究生物可吸收螺钉的适当螺纹深度。
生物可吸收螺钉的强度相对较低,这是一个关键的临床问题。较浅的螺纹深度会增加螺钉的强度,但螺钉的拔出强度会随螺纹深度成比例地降低。我们试图进一步阐明(i) 螺纹深度与拔出强度之间的关系,以及(ii) 由未煅烧和未烧结的羟基磷灰石颗粒和聚-L-内酰胺(u-HA/PLLA)制成的生物可吸收螺钉的小直径与剪切强度和弯曲强度之间的关系。共生产了七种主要直径为 4.5 毫米的螺钉(螺纹深度为 0.1-0.7 毫米)。使用模拟骨研究了每种螺钉的拔出强度。剪切试验和三点弯曲试验均用于测量螺钉的物理强度。然后,我们分析了机械结果与螺纹深度之间的关系。螺纹深度与拔出强度之间的关系呈现正双相线性相关,以 0.4 毫米螺纹深度为界。在测试的尺寸范围内,小直径与剪切强度和弯曲强度之间的关系呈现正线性相关。在本研究范围内,0.4 毫米的螺纹深度被证明是一个合适的值,可为主直径为 4.5 毫米的 u-HA/PLLA 螺钉提供足够的拉出强度和螺钉强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of biomechanics
Journal of biomechanics 生物-工程:生物医学
CiteScore
5.10
自引率
4.20%
发文量
345
审稿时长
1 months
期刊介绍: The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership. Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to: -Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells. -Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions. -Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response. -Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing. -Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine. -Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction. -Molecular Biomechanics - Mechanical analyses of biomolecules. -Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints. -Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics. -Sports Biomechanics - Mechanical analyses of sports performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信