MicroRNA-122 protects against interferon-α-induced hepatic inflammatory response via the Janus kinase-signal transducer and activator of transcription pathway.
Fanwei Liu, Bowen Liu, Shanshan Xu, Yinhua Ni, Xiaoli Liu
{"title":"MicroRNA-122 protects against interferon-α-induced hepatic inflammatory response via the Janus kinase-signal transducer and activator of transcription pathway.","authors":"Fanwei Liu, Bowen Liu, Shanshan Xu, Yinhua Ni, Xiaoli Liu","doi":"10.1507/endocrj.EJ24-0317","DOIUrl":null,"url":null,"abstract":"<p><p>Significant overlap in the epidemiology and coinfection of chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) has been identified, which accelerates the development of severe liver cirrhosis and hepatocellular carcinoma worldwide. Interferon-α (IFN-α), a cytokine with antiviral properties, exerts profound physiological effects on innate immunity by regulating interferon-stimulated genes (ISGs) within cells. However, the underlying mechanism of IFN-α in hepatic inflammation remains to be fully elucidated. Here, we utilized LO2 cells treated with the recombinant IFN-α protein and conducted microRNA (miR) sequencing. MiR-122-3p and miR-122-5p_R+1 were the most enriched miRNAs involved in the pathogenesis of IFN-α-induced inflammatory responses and were significantly downregulated by IFN-α treatment. Furthermore, we identified interferon induced protein with tetratricopeptide repeats 1 (IFIT1) as a potential target gene of miR-122. IFN-α markedly increased the expression of proinflammatory cytokines and fibrogenic genes but decreased the mRNA expression of ISGs. Additionally, IFN-α significantly activated the NF-κB p-p65, MAPK p-p38, and Jak/STAT pathways to trigger inflammation. Importantly, supplementation with a miR-122 mimic significantly alleviated IFN-α-induced inflammation and induced IFIT1 expression in LO2 cells. Conversely, the suppression of miR-122 markedly exacerbated the inflammatory response triggered by IFN-α. Furthermore, silencing IFIT1 via an siRNA elicited an inflammatory response, whereas IFIT1 overexpression ameliorated hepatic inflammation and fibrosis in a manner comparable to that induced by IFN-α treatment. Taken together, our findings suggest that miR-122 and its target, IFIT1, reciprocally regulate the inflammatory response associated with IFN through the Jak/STAT pathway.</p>","PeriodicalId":11631,"journal":{"name":"Endocrine journal","volume":" ","pages":"53-67"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1507/endocrj.EJ24-0317","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Significant overlap in the epidemiology and coinfection of chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) has been identified, which accelerates the development of severe liver cirrhosis and hepatocellular carcinoma worldwide. Interferon-α (IFN-α), a cytokine with antiviral properties, exerts profound physiological effects on innate immunity by regulating interferon-stimulated genes (ISGs) within cells. However, the underlying mechanism of IFN-α in hepatic inflammation remains to be fully elucidated. Here, we utilized LO2 cells treated with the recombinant IFN-α protein and conducted microRNA (miR) sequencing. MiR-122-3p and miR-122-5p_R+1 were the most enriched miRNAs involved in the pathogenesis of IFN-α-induced inflammatory responses and were significantly downregulated by IFN-α treatment. Furthermore, we identified interferon induced protein with tetratricopeptide repeats 1 (IFIT1) as a potential target gene of miR-122. IFN-α markedly increased the expression of proinflammatory cytokines and fibrogenic genes but decreased the mRNA expression of ISGs. Additionally, IFN-α significantly activated the NF-κB p-p65, MAPK p-p38, and Jak/STAT pathways to trigger inflammation. Importantly, supplementation with a miR-122 mimic significantly alleviated IFN-α-induced inflammation and induced IFIT1 expression in LO2 cells. Conversely, the suppression of miR-122 markedly exacerbated the inflammatory response triggered by IFN-α. Furthermore, silencing IFIT1 via an siRNA elicited an inflammatory response, whereas IFIT1 overexpression ameliorated hepatic inflammation and fibrosis in a manner comparable to that induced by IFN-α treatment. Taken together, our findings suggest that miR-122 and its target, IFIT1, reciprocally regulate the inflammatory response associated with IFN through the Jak/STAT pathway.
期刊介绍:
Endocrine Journal is an open access, peer-reviewed online journal with a long history. This journal publishes peer-reviewed research articles in multifaceted fields of basic, translational and clinical endocrinology. Endocrine Journal provides a chance to exchange your ideas, concepts and scientific observations in any area of recent endocrinology. Manuscripts may be submitted as Original Articles, Notes, Rapid Communications or Review Articles. We have a rapid reviewing and editorial decision system and pay a special attention to our quick, truly scientific and frequently-citable publication. Please go through the link for author guideline.