Synergistic Gas Therapy and Targeted Interventional Ablation With Size-Controllable Arsenic Sulfide (As2S3) Nanoparticles for Effective Elimination of Localized Cancer Pain.

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-10-02 DOI:10.1002/smll.202407197
Yu Tang, Jiyun Zhang, Yuan Yuan, Kele Shen, Zhiyuan Luo, Luyu Jia, Xiaofeng Long, Chi Peng, Tian Xie, Xiaoyuan Chen, Pengfei Zhang
{"title":"Synergistic Gas Therapy and Targeted Interventional Ablation With Size-Controllable Arsenic Sulfide (As<sub>2</sub>S<sub>3</sub>) Nanoparticles for Effective Elimination of Localized Cancer Pain.","authors":"Yu Tang, Jiyun Zhang, Yuan Yuan, Kele Shen, Zhiyuan Luo, Luyu Jia, Xiaofeng Long, Chi Peng, Tian Xie, Xiaoyuan Chen, Pengfei Zhang","doi":"10.1002/smll.202407197","DOIUrl":null,"url":null,"abstract":"<p><p>The elimination of localized cancer pain remains a globally neglected challenge. A potential solution lies in combining gas therapy with targeted interventional ablation therapy. In this study, HA-As<sub>2</sub>S<sub>3</sub> nanoparticles with controlled sizes are synthesized using different molecular weights of sodium hyaluronate (HA) as a supramolecular scaffold. Initially, HA co-assembles with arsenic ions (As<sup>3+</sup>) via coordinate bonds, forming HA-As<sup>3+</sup> scaffold intermediates. These intermediates, varying in size, then react with sulfur ions to produce size-controlled HA-As<sub>2</sub>S<sub>3</sub> particles. This approach demonstrates that different molecular weights of HA enable precise control over the particle size of arsenic sulfide, offering a straightforward and environmentally friendly method for synthesizing metal sulfide particles. In an acidic environment, HA-As<sub>2</sub>S<sub>3</sub> nanoparticles release hydrogen sulfide(H<sub>2</sub>S) gas and As<sup>3+</sup>. The released As<sup>3+</sup> directly damage tumor mitochondria, leading to substantial reactive oxygen species (ROS) production from mitochondria. Concurrently, the H<sub>2</sub>S gas inhibits the activity of catalase (CAT) and complex IV, preventing the beneficial decomposition of ROS and disrupting electron transfer in the mitochondrial respiratory chain. Consequently, it is found that H<sub>2</sub>S gas significantly enhances the mitochondrial damage induced by arsenic nanodrugs, effectively killing local tumors and ultimately eliminating cancer pain in mice.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407197","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The elimination of localized cancer pain remains a globally neglected challenge. A potential solution lies in combining gas therapy with targeted interventional ablation therapy. In this study, HA-As2S3 nanoparticles with controlled sizes are synthesized using different molecular weights of sodium hyaluronate (HA) as a supramolecular scaffold. Initially, HA co-assembles with arsenic ions (As3+) via coordinate bonds, forming HA-As3+ scaffold intermediates. These intermediates, varying in size, then react with sulfur ions to produce size-controlled HA-As2S3 particles. This approach demonstrates that different molecular weights of HA enable precise control over the particle size of arsenic sulfide, offering a straightforward and environmentally friendly method for synthesizing metal sulfide particles. In an acidic environment, HA-As2S3 nanoparticles release hydrogen sulfide(H2S) gas and As3+. The released As3+ directly damage tumor mitochondria, leading to substantial reactive oxygen species (ROS) production from mitochondria. Concurrently, the H2S gas inhibits the activity of catalase (CAT) and complex IV, preventing the beneficial decomposition of ROS and disrupting electron transfer in the mitochondrial respiratory chain. Consequently, it is found that H2S gas significantly enhances the mitochondrial damage induced by arsenic nanodrugs, effectively killing local tumors and ultimately eliminating cancer pain in mice.

利用尺寸可控的硫化砷(As2S3)纳米粒子协同气体疗法和靶向介入消融,有效消除局部癌痛
消除局部癌痛仍是一项被全球忽视的挑战。一种潜在的解决方案是将气体疗法与靶向介入消融疗法相结合。本研究以不同分子量的透明质酸钠(HA)为超分子支架,合成了大小可控的HA-As2S3纳米粒子。最初,HA 通过配位键与砷离子 (As3+) 共同组装,形成 HA-As3+ 支架中间体。这些中间体大小不一,然后与硫离子反应,生成大小可控的 HA-As2S3 颗粒。这种方法表明,不同分子量的 HA 可以精确控制硫化砷的粒度,为合成金属硫化物颗粒提供了一种简单、环保的方法。在酸性环境中,HA-As2S3 纳米粒子会释放出硫化氢(H2S)气体和 As3+。释放出的 As3+ 会直接损伤肿瘤线粒体,导致线粒体产生大量活性氧(ROS)。同时,H2S 气体抑制过氧化氢酶(CAT)和复合体 IV 的活性,阻止 ROS 的有益分解,破坏线粒体呼吸链中的电子传递。因此,研究发现 H2S 气体能显著增强纳米砷药物诱导的线粒体损伤,有效杀死局部肿瘤,最终消除小鼠的癌痛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信