Zachary L. Robinson, Jason A. Coombs, Mark Hudy, Keith H. Nislow, Andrew R. Whiteley
{"title":"Estimates of Effective Number of Breeders Identify Drivers of Decline in Mid-Atlantic Brook Trout Populations","authors":"Zachary L. Robinson, Jason A. Coombs, Mark Hudy, Keith H. Nislow, Andrew R. Whiteley","doi":"10.1111/eva.13769","DOIUrl":null,"url":null,"abstract":"<p>Brook Trout (<i>Salvelinus fontinalis</i>) populations have experienced marked declines throughout their native range and are presently threatened due to isolation in small habitat fragments, land use changes, and climate change. The existence of numerous, spatially distinct populations poses substantial challenges for monitoring population status (e.g., abundance, recruitment, or occupancy). Genetic monitoring with estimates of effective number of breeders (<i>N</i><sub>b</sub>) provides a potentially powerful metric to complement existing population monitoring, assessment, and prioritization. We estimated <i>N</i><sub>b</sub> for 71 Brook Trout habitat units in mid-Atlantic region of the United States and obtained a mean <i>N</i><sub>b</sub> of 73.2 (range 6.90–493). Our modeling approach tested whether <i>N</i><sub>b</sub> estimates were sensitive to differences in habitat size, presence of non-native salmonids, base flow index, temperature, acidic precipitation, and indices of anthropogenic disturbance. We found significant support for three of our hypotheses including the positive influences of available habitat and base flow index and negative effect of temperature. Our results are consistent with presently observed and predicted future impacts of climate change on populations of this cold-water fish. Importantly, these findings support the use of <i>N</i><sub>b</sub> in population assessments as an index of relative population status.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442137/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.13769","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Brook Trout (Salvelinus fontinalis) populations have experienced marked declines throughout their native range and are presently threatened due to isolation in small habitat fragments, land use changes, and climate change. The existence of numerous, spatially distinct populations poses substantial challenges for monitoring population status (e.g., abundance, recruitment, or occupancy). Genetic monitoring with estimates of effective number of breeders (Nb) provides a potentially powerful metric to complement existing population monitoring, assessment, and prioritization. We estimated Nb for 71 Brook Trout habitat units in mid-Atlantic region of the United States and obtained a mean Nb of 73.2 (range 6.90–493). Our modeling approach tested whether Nb estimates were sensitive to differences in habitat size, presence of non-native salmonids, base flow index, temperature, acidic precipitation, and indices of anthropogenic disturbance. We found significant support for three of our hypotheses including the positive influences of available habitat and base flow index and negative effect of temperature. Our results are consistent with presently observed and predicted future impacts of climate change on populations of this cold-water fish. Importantly, these findings support the use of Nb in population assessments as an index of relative population status.
布鲁克鳟(Salvelinus fontinalis)种群在其整个原生地都经历了明显的衰退,由于被隔离在狭小的栖息地片段、土地利用变化和气候变化,目前已濒临灭绝。由于存在众多在空间上截然不同的种群,这给监测种群状况(如丰度、招募或占有率)带来了巨大挑战。通过估算有效繁殖者数量(N b)来进行遗传监测,为补充现有的种群监测、评估和优先排序提供了一个潜在的有力指标。我们估算了美国大西洋中部地区 71 个布鲁克鳟栖息地单元的 N b,得到的平均 N b 为 73.2(范围为 6.90-493)。我们的建模方法测试了 N b 估计值是否对栖息地大小、是否存在非本地鲑鱼、基流指数、温度、酸性降水和人为干扰指数的差异敏感。我们发现,我们的三个假设得到了明显的支持,包括可用栖息地和基流指数的积极影响以及温度的消极影响。我们的研究结果与目前观察到的和预测的未来气候变化对这种冷水鱼类种群的影响是一致的。重要的是,这些发现支持在种群评估中使用 N b 作为相对种群状况的指标。
期刊介绍:
Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.