Laurent Devel, Carole Malgorn, Regis-William Tohon, Marie Launay, Konstantinos Patiniotis, Mylene Sejalon-Cipolla, Fabrice Beau, Robert Thai, Pierrick Bruyat, Annabelle Bonino, Sarah Bregant, Gilles Subra, Sonia Cantel, Dimitris Georgiadis
{"title":"Covalent Labeling of Matrix Metalloproteases with Affinity-Based Probes Containing Tuned Reactive N-Acyl-N-Alkyl Sulfonamide Cleavable Linkers.","authors":"Laurent Devel, Carole Malgorn, Regis-William Tohon, Marie Launay, Konstantinos Patiniotis, Mylene Sejalon-Cipolla, Fabrice Beau, Robert Thai, Pierrick Bruyat, Annabelle Bonino, Sarah Bregant, Gilles Subra, Sonia Cantel, Dimitris Georgiadis","doi":"10.1002/cbic.202400441","DOIUrl":null,"url":null,"abstract":"<p><p>Original covalent probes with an N-acyl-N-alkyl sulfonamide cleavable linker were developed to target a broad set of human Matrix Metalloproteases (MMPs). The electrophilicity of this cleavable linker was modulated to improve the selectivity of the probes as well as reduce their unspecific reactivity in complex biological matrices. We first demonstrated that targeting the S<sub>3</sub> subsite of MMPs enables access to broad-spectrum affinity-based probes that exclusively react with the active version of these proteases. The probes were further assessed in proteomes of varying complexity, where human MMP-13 was artificially introduced at known concentration and the resulting labeled MMP was imaged by in-gel fluorescence imaging. We showed that the less reactive probe was still able to covalently modify MMP-13 while exhibiting reduced off-target unspecific reactivity. This study clearly demonstrated the importance of finely controlling the reactivity of the NASA warhead to improve the selectivity of covalent probes in complex biological systems.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202400441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Original covalent probes with an N-acyl-N-alkyl sulfonamide cleavable linker were developed to target a broad set of human Matrix Metalloproteases (MMPs). The electrophilicity of this cleavable linker was modulated to improve the selectivity of the probes as well as reduce their unspecific reactivity in complex biological matrices. We first demonstrated that targeting the S3 subsite of MMPs enables access to broad-spectrum affinity-based probes that exclusively react with the active version of these proteases. The probes were further assessed in proteomes of varying complexity, where human MMP-13 was artificially introduced at known concentration and the resulting labeled MMP was imaged by in-gel fluorescence imaging. We showed that the less reactive probe was still able to covalently modify MMP-13 while exhibiting reduced off-target unspecific reactivity. This study clearly demonstrated the importance of finely controlling the reactivity of the NASA warhead to improve the selectivity of covalent probes in complex biological systems.