Hierarchically Ordered Pore Engineering of Carbon Supports with High-Density Edge-Type Single-Atom Sites to Boost Electrochemical CO2 Reduction.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chenghong Hu, Ximeng Hong, Miaoling Liu, Kui Shen, Liyu Chen, Yingwei Li
{"title":"Hierarchically Ordered Pore Engineering of Carbon Supports with High-Density Edge-Type Single-Atom Sites to Boost Electrochemical CO<sub>2</sub> Reduction.","authors":"Chenghong Hu, Ximeng Hong, Miaoling Liu, Kui Shen, Liyu Chen, Yingwei Li","doi":"10.1002/adma.202409531","DOIUrl":null,"url":null,"abstract":"<p><p>Metal sites at the edge of the carbon matrix possess unique geometric and electronic structures, exhibiting higher intrinsic activity than in-plane sites. However, creating single-atom catalysts with high-density edge sites remains challenging. Herein, the hierarchically ordered pore engineering of metal-organic framework-based materials to construct high-density edge-type single-atomic Ni sites for electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) is reported. The created ordered macroporous structure can expose enriched edges, further increased by hollowing the pore walls, which overcomes the low edge percentage in the traditional microporous substrates. The prepared single-atomic Ni sites on the ordered macroporous carbon with ultra-thin hollow walls (Ni/H-OMC) exhibit Faraday efficiencies of CO above 90% in an ultra-wide potential window of 600 mV and a turnover frequency of 3.4 × 10<sup>4</sup> h<sup>-1</sup>, much superior than that of the microporous material with dominant plane-type sites. Theory calculations reveal that NiN<sub>4</sub> sites at the edges have a significantly disrupted charge distribution, forming electron-rich Ni centers with enhanced adsorption ability with <sup>*</sup>COOH, thereby boosting CO<sub>2</sub>RR efficiency. Furthermore, a Zn-CO<sub>2</sub> battery using the Ni/H-OMC cathode shows an unprecedentedly high power density of 15.9 mW cm<sup>-2</sup> and maintains an exceptionally stable charge-discharge performance over 100 h.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202409531","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal sites at the edge of the carbon matrix possess unique geometric and electronic structures, exhibiting higher intrinsic activity than in-plane sites. However, creating single-atom catalysts with high-density edge sites remains challenging. Herein, the hierarchically ordered pore engineering of metal-organic framework-based materials to construct high-density edge-type single-atomic Ni sites for electrochemical CO2 reduction reaction (CO2RR) is reported. The created ordered macroporous structure can expose enriched edges, further increased by hollowing the pore walls, which overcomes the low edge percentage in the traditional microporous substrates. The prepared single-atomic Ni sites on the ordered macroporous carbon with ultra-thin hollow walls (Ni/H-OMC) exhibit Faraday efficiencies of CO above 90% in an ultra-wide potential window of 600 mV and a turnover frequency of 3.4 × 104 h-1, much superior than that of the microporous material with dominant plane-type sites. Theory calculations reveal that NiN4 sites at the edges have a significantly disrupted charge distribution, forming electron-rich Ni centers with enhanced adsorption ability with *COOH, thereby boosting CO2RR efficiency. Furthermore, a Zn-CO2 battery using the Ni/H-OMC cathode shows an unprecedentedly high power density of 15.9 mW cm-2 and maintains an exceptionally stable charge-discharge performance over 100 h.

Abstract Image

具有高密度边缘型单原子位点的碳载体分层有序孔隙工程,促进电化学二氧化碳还原。
碳基体边缘的金属位点具有独特的几何和电子结构,比平面内位点具有更高的内在活性。然而,创造具有高密度边缘位点的单原子催化剂仍然具有挑战性。本文报告了基于金属有机框架材料的分层有序孔隙工程,以构建用于电化学二氧化碳还原反应(CO2RR)的高密度边缘型单原子镍位点。创建的有序大孔结构可以暴露出丰富的边缘,并通过孔壁中空进一步增加边缘,从而克服了传统微孔基底中边缘比例较低的问题。在具有超薄空心壁的有序大孔碳(Ni/H-OMC)上制备的单原子镍位点在 600 mV 的超宽电位窗口中显示出 90% 以上的 CO 法拉第效率,翻转频率为 3.4 × 104 h-1,远高于平面型位点占主导地位的微孔材料。理论计算显示,边缘的 NiN4 位点的电荷分布明显紊乱,形成富电子 Ni 中心,增强了对 *COOH 的吸附能力,从而提高了 CO2RR 的效率。此外,使用 Ni/H-OMC 阴极的 Zn-CO2 电池显示出 15.9 mW cm-2 的空前高功率密度,并能在 100 小时内保持异常稳定的充放电性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信