Metabolic Reprogramming of Klebsiella pneumoniae Exposed to Serum and Its Potential Implications in Host Immune System Evasion and Resistance.

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Journal of Proteome Research Pub Date : 2024-11-01 Epub Date: 2024-10-03 DOI:10.1021/acs.jproteome.4c00286
Amanda Naiara Silva Moraes, Juliana Miranda Tatara, Rafael Lopes da Rosa, Franciele Maboni Siqueira, Guilherme Domingues, Markus Berger, Jorge Almeida Guimarães, Afonso Luís Barth, Patricia Orlandi Barth, John R Yates, Walter Orlando Beys-da-Silva, Lucélia Santi
{"title":"Metabolic Reprogramming of <i>Klebsiella pneumoniae</i> Exposed to Serum and Its Potential Implications in Host Immune System Evasion and Resistance.","authors":"Amanda Naiara Silva Moraes, Juliana Miranda Tatara, Rafael Lopes da Rosa, Franciele Maboni Siqueira, Guilherme Domingues, Markus Berger, Jorge Almeida Guimarães, Afonso Luís Barth, Patricia Orlandi Barth, John R Yates, Walter Orlando Beys-da-Silva, Lucélia Santi","doi":"10.1021/acs.jproteome.4c00286","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to identify, using proteomics, the molecular alterations caused by human serum exposure to <i>Klebsiella pneumoniae</i> ACH2. The analysis was performed under two different conditions, native serum from healthy donors and heat-inactivated serum (to inactivate the complement system), and at two different times, after 1 and 4 h of serum exposure. More than 1,000 bacterial proteins were identified at each time point. Enterobactin, a siderophore involved in iron uptake, and proteins involved in translation were upregulated at 1 h, while the chaperone ProQ and the glyoxylate cycle were identified after 4 h. Enzymes involved in the stress response were downregulated, and the SOD activity was validated using an enzymatic assay. In addition, an intricate metabolic adaptation was observed, with pyruvate and thiamine possibly involved in survival and virulence in the first hour of serum exposure. The addition of exogenous thiamine contributes to bacterial growth in human serum, corroborating this result. During 4 h of serum exposure, the glyoxylate cycle (GC) probably plays a central role, and the addition of exogenous succinate suppresses the GC, inducing a decrease in serum resistance. Therefore, serum exposure causes important changes in iron acquisition, the expression of virulence factors, and metabolic reprogramming, which could contribute to bacterial serum resistance.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536433/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00286","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study was to identify, using proteomics, the molecular alterations caused by human serum exposure to Klebsiella pneumoniae ACH2. The analysis was performed under two different conditions, native serum from healthy donors and heat-inactivated serum (to inactivate the complement system), and at two different times, after 1 and 4 h of serum exposure. More than 1,000 bacterial proteins were identified at each time point. Enterobactin, a siderophore involved in iron uptake, and proteins involved in translation were upregulated at 1 h, while the chaperone ProQ and the glyoxylate cycle were identified after 4 h. Enzymes involved in the stress response were downregulated, and the SOD activity was validated using an enzymatic assay. In addition, an intricate metabolic adaptation was observed, with pyruvate and thiamine possibly involved in survival and virulence in the first hour of serum exposure. The addition of exogenous thiamine contributes to bacterial growth in human serum, corroborating this result. During 4 h of serum exposure, the glyoxylate cycle (GC) probably plays a central role, and the addition of exogenous succinate suppresses the GC, inducing a decrease in serum resistance. Therefore, serum exposure causes important changes in iron acquisition, the expression of virulence factors, and metabolic reprogramming, which could contribute to bacterial serum resistance.

接触血清的肺炎克雷伯氏菌的代谢重编程及其对宿主免疫系统逃避和抵抗力的潜在影响
本研究的目的是利用蛋白质组学方法确定人血清暴露于肺炎克雷伯氏菌 ACH2 后引起的分子变化。分析是在两种不同的条件下进行的,即健康供体的原生血清和热灭活血清(灭活补体系统),以及血清暴露 1 小时和 4 小时后的两种不同时间。在每个时间点都鉴定出了 1000 多种细菌蛋白质。在 1 小时后,参与铁吸收的嗜苷酸肠杆菌素和参与翻译的蛋白质上调,而在 4 小时后,发现了伴侣蛋白 ProQ 和乙醛酸循环。此外,还观察到一种复杂的代谢适应,丙酮酸和硫胺素可能参与了血清暴露第一小时内的存活和毒力。添加外源硫胺素有助于细菌在人血清中的生长,从而证实了这一结果。在接触血清的 4 小时内,乙醛酸循环(GC)可能起着核心作用,而添加外源琥珀酸会抑制 GC,导致血清抵抗力下降。因此,血清暴露会导致铁的获取、毒力因子的表达和代谢重编程发生重要变化,这可能是细菌对血清产生抗性的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信