Low-Temperature Activation and Coupling of Methane on MgO Nanostructures Embedded in Cu2O/Cu(111).

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-10-03 DOI:10.1021/acsnano.4c10811
Arephin Islam, Erwei Huang, Yi Tian, Pedro J Ramírez, Kasala Prabhakar Reddy, Hojoon Lim, Nathaniel White, Adrian Hunt, Iradwikanari Waluyo, Ping Liu, José A Rodriguez
{"title":"Low-Temperature Activation and Coupling of Methane on MgO Nanostructures Embedded in Cu<sub>2</sub>O/Cu(111).","authors":"Arephin Islam, Erwei Huang, Yi Tian, Pedro J Ramírez, Kasala Prabhakar Reddy, Hojoon Lim, Nathaniel White, Adrian Hunt, Iradwikanari Waluyo, Ping Liu, José A Rodriguez","doi":"10.1021/acsnano.4c10811","DOIUrl":null,"url":null,"abstract":"<p><p>The efficient conversion of methane into valuable hydrocarbons, such as ethane and ethylene, at relatively low temperatures without deactivation issues is crucial for advancing sustainable energy solutions. Herein, AP-XPS and STM studies show that MgO nanostructures (0.2-0.5 nm wide, 0.4-0.6 Å high) embedded in a Cu<sub>2</sub>O/Cu(111) substrate activate methane at room temperature, mainly dissociating it into CH<sub><i>x</i></sub> (<i>x</i> = 2 or 3) and H adatoms, with minimal conversion to C adatoms. These MgO nanostructures in contact with Cu<sub>2</sub>O/Cu(111) enable C-C coupling into ethane and ethylene at 500 K, a significantly lower temperature than that required for bulk MgO catalysts (>700 K), with negligible carbon deposition and no deactivation. DFT calculations corroborate these experimental findings. The CH<sub>4,gas</sub> → *CH<sub>3</sub> + *H reaction is a downhill process on MgO/Cu<sub>2</sub>O/Cu(111) surfaces. The activation of methane is facilitated by electron transfer from copper to MgO and the existence of Mg and O atoms with a low coordination number in the oxide nanostructures. The formation of O-CH<sub>3</sub> and O-H bonds overcomes the energy necessary for the cleavage of a C-H bond in methane. DFT studies reveal that smaller Mg<sub>2</sub>O<sub>2</sub> model clusters provide stronger binding and lower activation barriers for C-H dissociation in CH<sub>4</sub>, while larger Mg<sub>3</sub>O<sub>3</sub> clusters promote C-C coupling due to weaker *CH<sub>3</sub> binding. All of these results emphasize the importance of size when optimizing the catalytic performance of MgO nanostructures in the selective conversion of methane.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c10811","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The efficient conversion of methane into valuable hydrocarbons, such as ethane and ethylene, at relatively low temperatures without deactivation issues is crucial for advancing sustainable energy solutions. Herein, AP-XPS and STM studies show that MgO nanostructures (0.2-0.5 nm wide, 0.4-0.6 Å high) embedded in a Cu2O/Cu(111) substrate activate methane at room temperature, mainly dissociating it into CHx (x = 2 or 3) and H adatoms, with minimal conversion to C adatoms. These MgO nanostructures in contact with Cu2O/Cu(111) enable C-C coupling into ethane and ethylene at 500 K, a significantly lower temperature than that required for bulk MgO catalysts (>700 K), with negligible carbon deposition and no deactivation. DFT calculations corroborate these experimental findings. The CH4,gas → *CH3 + *H reaction is a downhill process on MgO/Cu2O/Cu(111) surfaces. The activation of methane is facilitated by electron transfer from copper to MgO and the existence of Mg and O atoms with a low coordination number in the oxide nanostructures. The formation of O-CH3 and O-H bonds overcomes the energy necessary for the cleavage of a C-H bond in methane. DFT studies reveal that smaller Mg2O2 model clusters provide stronger binding and lower activation barriers for C-H dissociation in CH4, while larger Mg3O3 clusters promote C-C coupling due to weaker *CH3 binding. All of these results emphasize the importance of size when optimizing the catalytic performance of MgO nanostructures in the selective conversion of methane.

Abstract Image

嵌入 Cu2O/Cu(111)的氧化镁纳米结构上甲烷的低温活化和耦合。
在相对较低的温度下将甲烷高效转化为乙烷和乙烯等有价值的碳氢化合物而不会产生失活问题,这对于推进可持续能源解决方案至关重要。在此,AP-XPS 和 STM 研究表明,嵌入 Cu2O/Cu(111) 基底的氧化镁纳米结构(0.2-0.5 纳米宽,0.4-0.6 Å 高)可在室温下活化甲烷,主要将其离解为 CHx(x = 2 或 3)和 H 原子,极少转化为 C 原子。这些与 Cu2O/Cu(111)接触的氧化镁纳米结构可在 500 K 的温度下将 C-C 偶联成乙烷和乙烯,这一温度大大低于块状氧化镁催化剂所需的温度(>700 K),而且碳沉积和失活现象几乎可以忽略不计。DFT 计算证实了这些实验结果。在氧化镁/氧化铜/铜(111)表面上,CH4,gas → *CH3 + *H反应是一个下坡过程。电子从铜转移到氧化镁以及氧化物纳米结构中存在配位数较低的镁原子和氧原子促进了甲烷的活化。O-CH3 和 O-H 键的形成克服了甲烷中 C-H 键裂解所需的能量。DFT 研究显示,较小的 Mg2O2 模型簇为 CH4 中 C-H 的解离提供了更强的结合力和更低的活化障碍,而较大的 Mg3O3 簇则由于较弱的 *CH3 结合力而促进了 C-C 耦合。所有这些结果都强调了在选择性转化甲烷过程中优化氧化镁纳米结构催化性能时尺寸的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信