Role of Piezoelectricity in Disease Diagnosis and Treatment: A Review.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Pratishtha Tripathi, Ashutosh Kumar Dubey
{"title":"Role of Piezoelectricity in Disease Diagnosis and Treatment: A Review.","authors":"Pratishtha Tripathi, Ashutosh Kumar Dubey","doi":"10.1021/acsbiomaterials.4c01346","DOIUrl":null,"url":null,"abstract":"<p><p>Because of their unique electromechanical coupling response, piezoelectric smart biomaterials demonstrated distinctive capability toward effective, efficient, and quick diagnosis and treatment of a wide range of diseases. Such materials have potentiality to be utilized as wireless therapeutic methods with ultrasonic stimulation, which can be used as self-powered biomedical devices. An emerging advancement in the realm of personalized healthcare involves the utilization of piezoelectric biosensors for a range of therapeutic diagnosis such as diverse physiological signals in the human body, viruses, pathogens, and diseases like neurodegenerative ones, cancer, etc. The combination of piezoelectric nanoparticles with ultrasound has been established as a promising approach in sonodynamic therapy and piezocatalytic therapeutics and provides appealing alternatives for noninvasive treatments for cancer, chronic wounds, neurological diseases, etc. Innovations in implantable medical devices (IMDs), such as implantable piezoelectric energy generator (iPEG), offer significant advantages in improving physiological functioning and ability to power a cardiac pacemaker and restore the heart function. This comprehensive review critically evaluates the role of piezoelectricity in disease diagnosis and treatment, highlighting the implication of piezoelectric smart biomaterials for biomedical devices. It also discusses the potential of piezoelectric materials in healthcare monitoring, tissue engineering, and other medical applications while emphasizing future trends and challenges in the field.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01346","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Because of their unique electromechanical coupling response, piezoelectric smart biomaterials demonstrated distinctive capability toward effective, efficient, and quick diagnosis and treatment of a wide range of diseases. Such materials have potentiality to be utilized as wireless therapeutic methods with ultrasonic stimulation, which can be used as self-powered biomedical devices. An emerging advancement in the realm of personalized healthcare involves the utilization of piezoelectric biosensors for a range of therapeutic diagnosis such as diverse physiological signals in the human body, viruses, pathogens, and diseases like neurodegenerative ones, cancer, etc. The combination of piezoelectric nanoparticles with ultrasound has been established as a promising approach in sonodynamic therapy and piezocatalytic therapeutics and provides appealing alternatives for noninvasive treatments for cancer, chronic wounds, neurological diseases, etc. Innovations in implantable medical devices (IMDs), such as implantable piezoelectric energy generator (iPEG), offer significant advantages in improving physiological functioning and ability to power a cardiac pacemaker and restore the heart function. This comprehensive review critically evaluates the role of piezoelectricity in disease diagnosis and treatment, highlighting the implication of piezoelectric smart biomaterials for biomedical devices. It also discusses the potential of piezoelectric materials in healthcare monitoring, tissue engineering, and other medical applications while emphasizing future trends and challenges in the field.

压电在疾病诊断和治疗中的作用:综述。
由于具有独特的机电耦合响应,压电智能生物材料在有效、高效、快速诊断和治疗各种疾病方面表现出与众不同的能力。这种材料具有利用超声波刺激进行无线治疗的潜力,可用作自供电的生物医学设备。个性化医疗保健领域的一个新进展是利用压电生物传感器进行一系列治疗诊断,如人体内的各种生理信号、病毒、病原体以及神经退行性疾病、癌症等。压电纳米粒子与超声波的结合已成为声动力疗法和压电催化疗法中一种前景广阔的方法,并为癌症、慢性伤口、神经系统疾病等的无创治疗提供了极具吸引力的替代方案。植入式医疗设备(IMD)的创新,如植入式压电能量发生器(iPEG),在改善生理功能、为心脏起搏器供电和恢复心脏功能方面具有显著优势。这篇综合评论严格评估了压电在疾病诊断和治疗中的作用,强调了压电智能生物材料对生物医学设备的影响。它还讨论了压电材料在医疗保健监测、组织工程和其他医疗应用中的潜力,同时强调了该领域的未来趋势和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信