Chromium(VI) Adsorption and Reduction in Soils under Anoxic Conditions: The Relative Roles of Iron (oxyhr)oxides, Iron(II), Organic Matters, and Microbes.

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Wentao Wang, Chunmei Chen, Xiaopeng Huang, Shuqi Jiang, Juan Xiong, Jiangshan Li, Mei Hong, Jing Zhang, Yong Guan, Xionghan Feng, Wenfeng Tan, Fan Liu, Long-Jun Ding, Hui Yin
{"title":"Chromium(VI) Adsorption and Reduction in Soils under Anoxic Conditions: The Relative Roles of Iron (oxyhr)oxides, Iron(II), Organic Matters, and Microbes.","authors":"Wentao Wang, Chunmei Chen, Xiaopeng Huang, Shuqi Jiang, Juan Xiong, Jiangshan Li, Mei Hong, Jing Zhang, Yong Guan, Xionghan Feng, Wenfeng Tan, Fan Liu, Long-Jun Ding, Hui Yin","doi":"10.1021/acs.est.4c08677","DOIUrl":null,"url":null,"abstract":"<p><p>Chromium (Cr) transformation in soils mediated by iron (Fe) (oxyhr)oxides, Fe(II), organic matter (OM), and microbes is largely unexplored. Here, their coupling processes and mechanisms were investigated during anoxic incubation experiments of four Cr(VI) spiked soil samples with distinct physicochemical properties from the tropical and subtropical regions of China. It demonstrates that easily oxidizable organic carbon (EOC, 55-84%) and microbes (16-48%) drive Cr(VI) reduction in soils enriched with goethite and/or hematite, among which in dryland soils microbial sulfate reduction may also be involved. In contrast, EOC (38 ± 1%), microbes (33 ± 1%), and exchangeable and poorly crystalline Fe (oxyhr)oxide-associated Fe(II) (29 ± 3%) contribute to Cr(VI) reduction in paddy soils enriched with ferrihydrite. Additionally, exogenous Fe(II) and microbes significantly enhance Cr(VI) reduction in ferrihydrite- and goethite-rich soils, and Fe(II) greatly promotes but microbes slightly inhibit Cr passivation. Both Fe(II) and microbes, especially the latter, promote OM mineralization and result in the most substantial OM loss in ferrihydrite-rich paddy soils. During the incubation, part of the ferrihydrite converts to goethite but microbes may hinder the transformation. These results provide deep insights into the geochemical fates of redox-sensitive heavy metals mediated by the complicated effects of Fe, OM, and microbes in natural and engineered environments.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c08677","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Chromium (Cr) transformation in soils mediated by iron (Fe) (oxyhr)oxides, Fe(II), organic matter (OM), and microbes is largely unexplored. Here, their coupling processes and mechanisms were investigated during anoxic incubation experiments of four Cr(VI) spiked soil samples with distinct physicochemical properties from the tropical and subtropical regions of China. It demonstrates that easily oxidizable organic carbon (EOC, 55-84%) and microbes (16-48%) drive Cr(VI) reduction in soils enriched with goethite and/or hematite, among which in dryland soils microbial sulfate reduction may also be involved. In contrast, EOC (38 ± 1%), microbes (33 ± 1%), and exchangeable and poorly crystalline Fe (oxyhr)oxide-associated Fe(II) (29 ± 3%) contribute to Cr(VI) reduction in paddy soils enriched with ferrihydrite. Additionally, exogenous Fe(II) and microbes significantly enhance Cr(VI) reduction in ferrihydrite- and goethite-rich soils, and Fe(II) greatly promotes but microbes slightly inhibit Cr passivation. Both Fe(II) and microbes, especially the latter, promote OM mineralization and result in the most substantial OM loss in ferrihydrite-rich paddy soils. During the incubation, part of the ferrihydrite converts to goethite but microbes may hinder the transformation. These results provide deep insights into the geochemical fates of redox-sensitive heavy metals mediated by the complicated effects of Fe, OM, and microbes in natural and engineered environments.

Abstract Image

缺氧条件下土壤中铬(VI)的吸附和还原:铁(氧)氧化物、铁(II)、有机物和微生物的相对作用。
土壤中铬(Cr)的转化在很大程度上是由铁(Fe)(氧化物)、铁(II)、有机质(OM)和微生物介导的,目前尚未对此进行研究。本文通过对中国热带和亚热带地区四种具有不同理化性质的加标六价铬土壤样品进行缺氧培养实验,研究了它们之间的耦合过程和机制。结果表明,易氧化有机碳(EOC,55-84%)和微生物(16-48%)推动了富含高铁和/或赤铁矿的土壤中六价铬的还原,其中旱地土壤中的微生物硫酸盐还原也可能参与其中。与此相反,EOC(38 ± 1%)、微生物(33 ± 1%)以及可交换的和结晶性差的(氧化物)氧化铁结合的铁(II)(29 ± 3%)有助于富含铁酸盐的水稻田土壤中六价铬的还原。此外,外源铁(II)和微生物可显著提高富含铁水盐和高铁盐土壤中的六(Cr)还原作用,而铁(II)可极大地促进但微生物则会轻微抑制铬的钝化。铁(II)和微生物(尤其是后者)都能促进 OM 矿化,并导致富含铁水盐的水稻土中 OM 的大量流失。在培养过程中,部分铁水物转化为鹅膏石,但微生物可能会阻碍这种转化。这些结果深入揭示了自然环境和工程环境中铁、OM 和微生物的复杂影响所介导的氧化还原敏感重金属的地球化学命运。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信