D R Sayyed, M Lee, S Hong, H Kim, H Kim, J Sanchez, S Choi, E Han, H Kang, J Kim, M Joan, H Kim, H Chae, J Park
{"title":"A-347 A Comprehensive Exdia TRF-LFIA for Simultaneous Quantification of GFAP and NT-proBNP in Distinguishing Ischemic and Hemorrhagic Stroke","authors":"D R Sayyed, M Lee, S Hong, H Kim, H Kim, J Sanchez, S Choi, E Han, H Kang, J Kim, M Joan, H Kim, H Chae, J Park","doi":"10.1093/clinchem/hvae106.341","DOIUrl":null,"url":null,"abstract":"Background The goal of this study is to create a highly sensitive time-resolved fluorescence lateral flow immunoassay (TRF-LFIA) capable of concurrently measuring glial fibrillary acidic protein (GFAP) and the N-terminal fragment of B-type natriuretic peptide precursor (NT-proBNP). This assay is designed as a diagnostic tool and aims to provide an algorithm for stroke management, specifically for distinguishing between Ischemic stroke (IS) and Hemorrhagic stroke (HS). However, LFIA to quantify simultaneous serum NT-proBNP and GFAP are not yet available. Methods We have developed and validated a novel TRF-LFIA for the simultaneous quantitative detection of NT-proBNP and GFAP. The sensitivity and reproducibility of the immunoassay were significantly improved by employing specific monoclonal antibodies linked to europium nanoparticles (EuNPs) that specifically target NT-proBNP and GFAP. The detection area on the nitrocellulose membrane featured sandwich-style complexes containing three test lines for NT-proBNP, GFAP, and Control. The fluorescence intensity of these test lines on the nitrocellulose membrane was measured using an in-house developed Exdia TRF-Plus analyzer. As proof-of-concept, we enrolled patients suspected of having a stroke who were admitted within a specific time frame (6 hours). A small amount of clinical specimen (serum) was used with a well-assembled cartridge for the measurement of GFAP and NT-proBNP. Results To optimize the LFIA, an EuNPs conjugated antibodies were investigated to improve the detection sensitivity and decrease the background signal as well shorten the detection time. The Exdia TRF-LFIA cartridge offers a wide linear dynamic detection range, rapid detection, high sensitivity, and specificity. The limit of detection was determined to be 98 pg/mL for NT-proBNP and 68 pg/mL for GFAP, with minimal cross-reactivity. There were 200 clinical human serum samples that were used to evaluate this platform with high correlation. By combining the results of NT-proBNP and GFAP, we formulated an algorithm for the clinical assessment of Ischemic Stroke (IS) and Hemorrhagic Stroke (HS). According to our proposed algorithm, the combination of GFAP and NT-proBNP emerged as the most effective biomarker combination for distinguishing between IS and HS. Conclusions Exdia TRF-LFIA shows great potential as a supplemental method for in vitro diagnostics in the laboratory or in other point-of-care testing (POCT) applications. Its development substantially decreases the diagnosis time for IS and HS. The proposed algorithm not only minimizes treatment delays but also lowers medical costs for patients.","PeriodicalId":10690,"journal":{"name":"Clinical chemistry","volume":"220 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/clinchem/hvae106.341","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background The goal of this study is to create a highly sensitive time-resolved fluorescence lateral flow immunoassay (TRF-LFIA) capable of concurrently measuring glial fibrillary acidic protein (GFAP) and the N-terminal fragment of B-type natriuretic peptide precursor (NT-proBNP). This assay is designed as a diagnostic tool and aims to provide an algorithm for stroke management, specifically for distinguishing between Ischemic stroke (IS) and Hemorrhagic stroke (HS). However, LFIA to quantify simultaneous serum NT-proBNP and GFAP are not yet available. Methods We have developed and validated a novel TRF-LFIA for the simultaneous quantitative detection of NT-proBNP and GFAP. The sensitivity and reproducibility of the immunoassay were significantly improved by employing specific monoclonal antibodies linked to europium nanoparticles (EuNPs) that specifically target NT-proBNP and GFAP. The detection area on the nitrocellulose membrane featured sandwich-style complexes containing three test lines for NT-proBNP, GFAP, and Control. The fluorescence intensity of these test lines on the nitrocellulose membrane was measured using an in-house developed Exdia TRF-Plus analyzer. As proof-of-concept, we enrolled patients suspected of having a stroke who were admitted within a specific time frame (6 hours). A small amount of clinical specimen (serum) was used with a well-assembled cartridge for the measurement of GFAP and NT-proBNP. Results To optimize the LFIA, an EuNPs conjugated antibodies were investigated to improve the detection sensitivity and decrease the background signal as well shorten the detection time. The Exdia TRF-LFIA cartridge offers a wide linear dynamic detection range, rapid detection, high sensitivity, and specificity. The limit of detection was determined to be 98 pg/mL for NT-proBNP and 68 pg/mL for GFAP, with minimal cross-reactivity. There were 200 clinical human serum samples that were used to evaluate this platform with high correlation. By combining the results of NT-proBNP and GFAP, we formulated an algorithm for the clinical assessment of Ischemic Stroke (IS) and Hemorrhagic Stroke (HS). According to our proposed algorithm, the combination of GFAP and NT-proBNP emerged as the most effective biomarker combination for distinguishing between IS and HS. Conclusions Exdia TRF-LFIA shows great potential as a supplemental method for in vitro diagnostics in the laboratory or in other point-of-care testing (POCT) applications. Its development substantially decreases the diagnosis time for IS and HS. The proposed algorithm not only minimizes treatment delays but also lowers medical costs for patients.
期刊介绍:
Clinical Chemistry is a peer-reviewed scientific journal that is the premier publication for the science and practice of clinical laboratory medicine. It was established in 1955 and is associated with the Association for Diagnostics & Laboratory Medicine (ADLM).
The journal focuses on laboratory diagnosis and management of patients, and has expanded to include other clinical laboratory disciplines such as genomics, hematology, microbiology, and toxicology. It also publishes articles relevant to clinical specialties including cardiology, endocrinology, gastroenterology, genetics, immunology, infectious diseases, maternal-fetal medicine, neurology, nutrition, oncology, and pediatrics.
In addition to original research, editorials, and reviews, Clinical Chemistry features recurring sections such as clinical case studies, perspectives, podcasts, and Q&A articles. It has the highest impact factor among journals of clinical chemistry, laboratory medicine, pathology, analytical chemistry, transfusion medicine, and clinical microbiology.
The journal is indexed in databases such as MEDLINE and Web of Science.