{"title":"Climate Change and Hydrological Extremes","authors":"Jinghua Xiong, Yuting Yang","doi":"10.1007/s40641-024-00198-4","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose of Review</h3><p>Climate change has profoundly impacted the Earth's atmospheric system and altered the terrestrial water cycle, reshaping the spatiotemporal patterns of hydrological extremes, including floods and droughts. This review aims to summarize recent advancements in understanding the response of hydrological extremes to climate change in both past and future.</p><h3 data-test=\"abstract-sub-heading\">Recent Findings</h3><p>Historical floods driven by heavy rainfall are increasing, while those dominated by snow processes are decreasing, resulting in non-significant changes on a global average. Previously overestimated droughts, due to inaccuracies in hydrological modules within offline diagnostic metrics, have been corrected by advanced modeling results, also revealing minimal historical changes on a global scale. Earth system simulations project concurrent increases in both floods and droughts under future climate change scenarios.</p><h3 data-test=\"abstract-sub-heading\">Summary</h3><p>Climate change influences hydrological extremes across various scales, with diverse spatial distributions and underlying mechanisms. Decision-makers should integrate multi-source information to enhance the monitoring and adaptation of hydrological extremes, particularly focusing on abrupt drought-flood alternations.</p>","PeriodicalId":54235,"journal":{"name":"Current climate change reports","volume":"8 1","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current climate change reports","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s40641-024-00198-4","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose of Review
Climate change has profoundly impacted the Earth's atmospheric system and altered the terrestrial water cycle, reshaping the spatiotemporal patterns of hydrological extremes, including floods and droughts. This review aims to summarize recent advancements in understanding the response of hydrological extremes to climate change in both past and future.
Recent Findings
Historical floods driven by heavy rainfall are increasing, while those dominated by snow processes are decreasing, resulting in non-significant changes on a global average. Previously overestimated droughts, due to inaccuracies in hydrological modules within offline diagnostic metrics, have been corrected by advanced modeling results, also revealing minimal historical changes on a global scale. Earth system simulations project concurrent increases in both floods and droughts under future climate change scenarios.
Summary
Climate change influences hydrological extremes across various scales, with diverse spatial distributions and underlying mechanisms. Decision-makers should integrate multi-source information to enhance the monitoring and adaptation of hydrological extremes, particularly focusing on abrupt drought-flood alternations.
期刊介绍:
Current Climate Change Reports is dedicated to exploring the most recent research and policy issues in the dynamically evolving field of Climate Change. The journal covers a broad spectrum of topics, encompassing Ecological Impacts, Advances in Modeling, Sea Level Projections, Extreme Events, Climate Feedback and Sensitivity, Hydrologic Impact, Effects on Human Health, and Economics and Policy Issues. Expert contributors provide reviews on the latest research, assess the effectiveness of available options, and engage in discussions about special considerations. All articles undergo a thorough peer-review process by specialists in the field to ensure accuracy and objectivity.