Charlotte Capitanchik, Oscar G. Wilkins, Nils Wagner, Julien Gagneur, Jernej Ule
{"title":"From computational models of the splicing code to regulatory mechanisms and therapeutic implications","authors":"Charlotte Capitanchik, Oscar G. Wilkins, Nils Wagner, Julien Gagneur, Jernej Ule","doi":"10.1038/s41576-024-00774-2","DOIUrl":null,"url":null,"abstract":"<p>Since the discovery of RNA splicing and its role in gene expression, researchers have sought a set of rules, an algorithm or a computational model that could predict the splice isoforms, and their frequencies, produced from any transcribed gene in a specific cellular context. Over the past 30 years, these models have evolved from simple position weight matrices to deep-learning models capable of integrating sequence data across vast genomic distances. Most recently, new model architectures are moving the field closer to context-specific alternative splicing predictions, and advances in sequencing technologies are expanding the type of data that can be used to inform and interpret such models. Together, these developments are driving improved understanding of splicing regulatory mechanisms and emerging applications of the splicing code to the rational design of RNA- and splicing-based therapeutics.</p>","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"46 1","pages":""},"PeriodicalIF":39.1000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41576-024-00774-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Since the discovery of RNA splicing and its role in gene expression, researchers have sought a set of rules, an algorithm or a computational model that could predict the splice isoforms, and their frequencies, produced from any transcribed gene in a specific cellular context. Over the past 30 years, these models have evolved from simple position weight matrices to deep-learning models capable of integrating sequence data across vast genomic distances. Most recently, new model architectures are moving the field closer to context-specific alternative splicing predictions, and advances in sequencing technologies are expanding the type of data that can be used to inform and interpret such models. Together, these developments are driving improved understanding of splicing regulatory mechanisms and emerging applications of the splicing code to the rational design of RNA- and splicing-based therapeutics.
期刊介绍:
At Nature Reviews Genetics, our goal is to be the leading source of reviews and commentaries for the scientific communities we serve. We are dedicated to publishing authoritative articles that are easily accessible to our readers. We believe in enhancing our articles with clear and understandable figures, tables, and other display items. Our aim is to provide an unparalleled service to authors, referees, and readers, and we are committed to maximizing the usefulness and impact of each article we publish.
Within our journal, we publish a range of content including Research Highlights, Comments, Reviews, and Perspectives that are relevant to geneticists and genomicists. With our broad scope, we ensure that the articles we publish reach the widest possible audience.
As part of the Nature Reviews portfolio of journals, we strive to uphold the high standards and reputation associated with this esteemed collection of publications.