Supervised deep learning-based synthetic computed tomography from kilovoltage cone-beam computed tomography images for adaptive radiation therapy in head and neck cancer.

Radiation oncology journal Pub Date : 2024-09-01 Epub Date: 2024-05-30 DOI:10.3857/roj.2023.00584
Chirasak Khamfongkhruea, Tipaporn Prakarnpilas, Sangutid Thongsawad, Aphisara Deeharing, Thananya Chanpanya, Thunpisit Mundee, Pattarakan Suwanbut, Kampheang Nimjaroen
{"title":"Supervised deep learning-based synthetic computed tomography from kilovoltage cone-beam computed tomography images for adaptive radiation therapy in head and neck cancer.","authors":"Chirasak Khamfongkhruea, Tipaporn Prakarnpilas, Sangutid Thongsawad, Aphisara Deeharing, Thananya Chanpanya, Thunpisit Mundee, Pattarakan Suwanbut, Kampheang Nimjaroen","doi":"10.3857/roj.2023.00584","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To generate and investigate a supervised deep learning algorithm for creating synthetic computed tomography (sCT) images from kilovoltage cone-beam computed tomography (kV-CBCT) images for adaptive radiation therapy (ART) in head and neck cancer (HNC).</p><p><strong>Materials and methods: </strong>This study generated the supervised U-Net deep learning model using 3,491 image pairs from planning computed tomography (pCT) and kV-CBCT datasets obtained from 40 HNC patients. The dataset was split into 80% for training and 20% for testing. The evaluation of the sCT images compared to pCT images focused on three aspects: Hounsfield units accuracy, assessed using mean absolute error (MAE) and root mean square error (RMSE); image quality, evaluated using the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) between sCT and pCT images; and dosimetric accuracy, encompassing 3D gamma passing rates for dose distribution and percentage dose difference.</p><p><strong>Results: </strong>MAE, RMSE, PSNR, and SSIM showed improvements from their initial values of 53.15 ± 40.09, 153.99 ± 79.78, 47.91 ± 4.98 dB, and 0.97 ± 0.02 to 41.47 ± 30.59, 130.39 ± 78.06, 49.93 ± 6.00 dB, and 0.98 ± 0.02, respectively. Regarding dose evaluation, 3D gamma passing rates for dose distribution within sCT images under 2%/2 mm, 3%/2 mm, and 3%/3 mm criteria, yielded passing rates of 92.1% ± 3.8%, 93.8% ± 3.0%, and 96.9% ± 2.0%, respectively. The sCT images exhibited minor variations in the percentage dose distribution of the investigated target and structure volumes. However, it is worth noting that the sCT images exhibited anatomical variations when compared to the pCT images.</p><p><strong>Conclusion: </strong>These findings highlight the potential of the supervised U-Net deep learningmodel in generating kV-CBCT-based sCT images for ART in patients with HNC.</p>","PeriodicalId":94184,"journal":{"name":"Radiation oncology journal","volume":"42 3","pages":"181-191"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467487/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation oncology journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3857/roj.2023.00584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To generate and investigate a supervised deep learning algorithm for creating synthetic computed tomography (sCT) images from kilovoltage cone-beam computed tomography (kV-CBCT) images for adaptive radiation therapy (ART) in head and neck cancer (HNC).

Materials and methods: This study generated the supervised U-Net deep learning model using 3,491 image pairs from planning computed tomography (pCT) and kV-CBCT datasets obtained from 40 HNC patients. The dataset was split into 80% for training and 20% for testing. The evaluation of the sCT images compared to pCT images focused on three aspects: Hounsfield units accuracy, assessed using mean absolute error (MAE) and root mean square error (RMSE); image quality, evaluated using the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) between sCT and pCT images; and dosimetric accuracy, encompassing 3D gamma passing rates for dose distribution and percentage dose difference.

Results: MAE, RMSE, PSNR, and SSIM showed improvements from their initial values of 53.15 ± 40.09, 153.99 ± 79.78, 47.91 ± 4.98 dB, and 0.97 ± 0.02 to 41.47 ± 30.59, 130.39 ± 78.06, 49.93 ± 6.00 dB, and 0.98 ± 0.02, respectively. Regarding dose evaluation, 3D gamma passing rates for dose distribution within sCT images under 2%/2 mm, 3%/2 mm, and 3%/3 mm criteria, yielded passing rates of 92.1% ± 3.8%, 93.8% ± 3.0%, and 96.9% ± 2.0%, respectively. The sCT images exhibited minor variations in the percentage dose distribution of the investigated target and structure volumes. However, it is worth noting that the sCT images exhibited anatomical variations when compared to the pCT images.

Conclusion: These findings highlight the potential of the supervised U-Net deep learningmodel in generating kV-CBCT-based sCT images for ART in patients with HNC.

基于监督深度学习的千伏锥束计算机断层扫描图像合成计算机断层扫描,用于头颈部癌症的自适应放射治疗。
目的:生成并研究一种有监督的深度学习算法,用于从千伏锥束计算机断层扫描(kV-CBCT)图像中创建合成计算机断层扫描(sCT)图像,用于头颈部癌症(HNC)的自适应放射治疗(ART):本研究使用从 40 名 HNC 患者处获得的规划计算机断层扫描(pCT)和千伏锥束计算机断层扫描(kV-CBCT)数据集中的 3,491 对图像生成了有监督的 U-Net 深度学习模型。数据集分为 80% 用于训练,20% 用于测试。与 pCT 图像相比,sCT 图像的评估主要集中在三个方面:Hounsfield单位准确性,使用平均绝对误差(MAE)和均方根误差(RMSE)评估;图像质量,使用sCT和pCT图像之间的峰值信噪比(PSNR)和结构相似性指数(SSIM)评估;剂量学准确性,包括剂量分布的三维伽马通过率和剂量差百分比:MAE、RMSE、PSNR 和 SSIM 分别从最初的 53.15 ± 40.09、153.99 ± 79.78、47.91 ± 4.98 dB 和 0.97 ± 0.02 提高到 41.47 ± 30.59、130.39 ± 78.06、49.93 ± 6.00 dB 和 0.98 ± 0.02。在剂量评估方面,在 2%/2 mm、3%/2 mm 和 3%/3 mm 标准下,sCT 图像内剂量分布的三维伽马通过率分别为 92.1% ± 3.8%、93.8% ± 3.0% 和 96.9% ± 2.0%。sCT 图像在所研究的靶体和结构体的剂量分布百分比方面表现出轻微的差异。然而,值得注意的是,与 pCT 图像相比,sCT 图像显示出解剖学上的差异:这些发现凸显了有监督的 U-Net 深度学习模型在生成基于 kV-CBCT 的 sCT 图像用于 HNC 患者 ART 方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信