Dorcas Matuwana, Eunji Hong, Sizhe Huang, Xinxin Xu, Geunho Jang, Ruobai Xiao, Siyuan Rao and Qianbin Wang
{"title":"Near-infrared activated liposomes for neuroprotection in glaucoma†","authors":"Dorcas Matuwana, Eunji Hong, Sizhe Huang, Xinxin Xu, Geunho Jang, Ruobai Xiao, Siyuan Rao and Qianbin Wang","doi":"10.1039/D4TB00745J","DOIUrl":null,"url":null,"abstract":"<p >Neurodegenerative diseases have a profound impact on vision, leading to conditions such as glaucoma, optic neuropathy, and diabetic retinopathy, affecting millions worldwide. These diseases are characterized by the degeneration of retinal ganglion cells (RGCs), resulting in a progressive loss of visual acuity and field, with the threat of irreversible blindness. However, existing treatments, such as eye drops, direct injections, and laser surgeries face significant challenges due to limited efficacy and potential infection. The inefficiency of traditional corneal drug delivery methods is a major obstacle in treating vision neurodegenerative diseases. To address these challenges, we developed a remotely triggered on-demand liposomal delivery system to treat glaucomatous neurodegeneration in mice. We utilized the localized surface plasmon resonance (LSPR) effect of gold nanorods (AuNRs) under near-infrared (NIR) light (808 nm) to control the release of cyclodextrin-encapsulated melatonin from thermally responsive liposomal nanocarriers in the vitreous humor. Due to the transparency of the eye's cornea, NIR light can penetrate deep tissues, enabling on-demand drug delivery to the retina. By enhancing the drug's solubility and stability through cyclodextrin encapsulation, this remotely activated melatonin/HPβCD AuNRs liposomes delivery system can decrease intraocular pressure (IOP) elevation by (24 ± 7)%, enhance the survival rate of RGCs by (77 ± 6)%, and decrease glial fibrillary acidic protein (GFAP) activation by (75 ± 6)% at depth in an acute experimental glaucoma model. This NIR-triggered drug delivery system presents the potential of a promising minimally photo-triggered therapeutic option for glaucoma treatment.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 42","pages":" 10902-10914"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb00745j","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Neurodegenerative diseases have a profound impact on vision, leading to conditions such as glaucoma, optic neuropathy, and diabetic retinopathy, affecting millions worldwide. These diseases are characterized by the degeneration of retinal ganglion cells (RGCs), resulting in a progressive loss of visual acuity and field, with the threat of irreversible blindness. However, existing treatments, such as eye drops, direct injections, and laser surgeries face significant challenges due to limited efficacy and potential infection. The inefficiency of traditional corneal drug delivery methods is a major obstacle in treating vision neurodegenerative diseases. To address these challenges, we developed a remotely triggered on-demand liposomal delivery system to treat glaucomatous neurodegeneration in mice. We utilized the localized surface plasmon resonance (LSPR) effect of gold nanorods (AuNRs) under near-infrared (NIR) light (808 nm) to control the release of cyclodextrin-encapsulated melatonin from thermally responsive liposomal nanocarriers in the vitreous humor. Due to the transparency of the eye's cornea, NIR light can penetrate deep tissues, enabling on-demand drug delivery to the retina. By enhancing the drug's solubility and stability through cyclodextrin encapsulation, this remotely activated melatonin/HPβCD AuNRs liposomes delivery system can decrease intraocular pressure (IOP) elevation by (24 ± 7)%, enhance the survival rate of RGCs by (77 ± 6)%, and decrease glial fibrillary acidic protein (GFAP) activation by (75 ± 6)% at depth in an acute experimental glaucoma model. This NIR-triggered drug delivery system presents the potential of a promising minimally photo-triggered therapeutic option for glaucoma treatment.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices