Computational targeting of iron uptake proteins in Covid-19 induced mucormycosis to identify inhibitors via molecular dynamics, molecular mechanics and density function theory studies.

In silico pharmacology Pub Date : 2024-09-29 eCollection Date: 2024-01-01 DOI:10.1007/s40203-024-00264-7
Manjima Sen, B M Priyanka, D Anusha, S Puneetha, Anagha S Setlur, Chandrashekar Karunakaran, Amulya Tandur, C S Prashant, Vidya Niranjan
{"title":"Computational targeting of iron uptake proteins in Covid-19 induced mucormycosis to identify inhibitors via molecular dynamics, molecular mechanics and density function theory studies.","authors":"Manjima Sen, B M Priyanka, D Anusha, S Puneetha, Anagha S Setlur, Chandrashekar Karunakaran, Amulya Tandur, C S Prashant, Vidya Niranjan","doi":"10.1007/s40203-024-00264-7","DOIUrl":null,"url":null,"abstract":"<p><p>Mucormycosis is a concerning invasive fungal infection with difficult diagnosis, high mortality rates, and limited treatment options. Iron availability is crucial for fungal growth that causes this disease. This study aimed to computationally target iron uptake proteins in <i>Rhizopus arrhizus, Lichtheimia corymbifera,</i> and <i>Mucor circinelloides</i> to identify inhibitors, thereby halting fungal growth and intervening in mucormycosis pathogenesis. Seven important iron uptake proteins were identified, modeled, and validated using Ramachandran plots. An in-house antifungal library of ~ 15,401 compounds was screened in molecular docking studies with these proteins. The best small molecule-protein complexes were simulated at 100 ns using Maestro, Schrodinger. Toxicity predictions suggested all six molecules, identified as the best binding compounds to seven proteins, belonged to lower toxicity levels per GHS classification. A molecular mechanics GBSA study for all seven complexes indicated low standard deviations after calculating free binding energies every 10 ns of the 100 ns trajectory. Density functional theory via quantum mechanics approaches highlighted the HOMO, LUMO, and other properties of the six best-bound molecules, revealing their binding capabilities and behaviour. This study sheds light on the molecular mechanisms and protein-ligand interactions, providing a multi-dimensional view towards the use of FDBD01920, FDBD01923, and FDBD01848 as stable antifungal ligands.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-024-00264-7.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 2","pages":"90"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439861/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In silico pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-024-00264-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mucormycosis is a concerning invasive fungal infection with difficult diagnosis, high mortality rates, and limited treatment options. Iron availability is crucial for fungal growth that causes this disease. This study aimed to computationally target iron uptake proteins in Rhizopus arrhizus, Lichtheimia corymbifera, and Mucor circinelloides to identify inhibitors, thereby halting fungal growth and intervening in mucormycosis pathogenesis. Seven important iron uptake proteins were identified, modeled, and validated using Ramachandran plots. An in-house antifungal library of ~ 15,401 compounds was screened in molecular docking studies with these proteins. The best small molecule-protein complexes were simulated at 100 ns using Maestro, Schrodinger. Toxicity predictions suggested all six molecules, identified as the best binding compounds to seven proteins, belonged to lower toxicity levels per GHS classification. A molecular mechanics GBSA study for all seven complexes indicated low standard deviations after calculating free binding energies every 10 ns of the 100 ns trajectory. Density functional theory via quantum mechanics approaches highlighted the HOMO, LUMO, and other properties of the six best-bound molecules, revealing their binding capabilities and behaviour. This study sheds light on the molecular mechanisms and protein-ligand interactions, providing a multi-dimensional view towards the use of FDBD01920, FDBD01923, and FDBD01848 as stable antifungal ligands.

Supplementary information: The online version contains supplementary material available at 10.1007/s40203-024-00264-7.

通过分子动力学、分子力学和密度函数理论研究,计算 Covid-19 诱导的粘液瘤病中铁摄取蛋白的靶向性,以确定抑制剂。
粘孢子菌病是一种令人担忧的侵袭性真菌感染,诊断困难,死亡率高,治疗方案有限。铁的供应对导致这种疾病的真菌生长至关重要。本研究旨在通过计算锁定 Rhizopus arrhizus、Lichtheimia corymbifera 和 Mucor circinelloides 中的铁吸收蛋白,找出抑制剂,从而阻止真菌生长,干预粘孢子菌病的发病机制。利用拉马钱德兰图鉴定、建模和验证了七个重要的铁吸收蛋白。在与这些蛋白的分子对接研究中,筛选了一个由大约 15,401 种化合物组成的内部抗真菌化合物库。使用 Schrodinger 的 Maestro 在 100 ns 的时间内模拟了最佳的小分子-蛋白质复合物。毒性预测表明,被确定为与七种蛋白质结合最好的化合物的所有六种分子都属于 GHS 分类中的低毒性级别。对所有七种复合物进行的分子力学 GBSA 研究表明,在 100 毫微秒轨迹中每 10 毫微秒计算一次自由结合能后,标准偏差较低。密度泛函理论通过量子力学方法突出显示了六种最佳结合分子的 HOMO、LUMO 和其他特性,揭示了它们的结合能力和行为。这项研究揭示了分子机制和蛋白质与配体的相互作用,为将 FDBD01920、FDBD01923 和 FDBD01848 用作稳定的抗真菌配体提供了多维视角:在线版本包含补充材料,可查阅 10.1007/s40203-024-00264-7。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信