Xin Zhou, Ying Wang, Zhangqi Dou, Gloria Delfanti, Ourania Tsahouridis, Caroline Marnata Pellegry, Manuela Zingarelli, Gatphan Atassi, Mark G. Woodcock, Giulia Casorati, Paolo Dellabona, William Y. Kim, Linjie Guo, Barbara Savoldo, Ageliki Tsagaratou, J. Justin Milner, Leonid S. Metelitsa, Gianpietro Dotti
{"title":"CAR-redirected natural killer T cells demonstrate superior antitumor activity to CAR-T cells through multimodal CD1d-dependent mechanisms","authors":"Xin Zhou, Ying Wang, Zhangqi Dou, Gloria Delfanti, Ourania Tsahouridis, Caroline Marnata Pellegry, Manuela Zingarelli, Gatphan Atassi, Mark G. Woodcock, Giulia Casorati, Paolo Dellabona, William Y. Kim, Linjie Guo, Barbara Savoldo, Ageliki Tsagaratou, J. Justin Milner, Leonid S. Metelitsa, Gianpietro Dotti","doi":"10.1038/s43018-024-00830-0","DOIUrl":null,"url":null,"abstract":"Human natural killer T (NKT) cells have been proposed as a promising cell platform for chimeric antigen receptor (CAR) therapy in solid tumors. Here we generated murine CAR-NKT cells and compared them with CAR-T cells in immune-competent mice. Both CAR-NKT cells and CAR-T cells showed similar antitumor effects in vitro, but CAR-NKT cells showed superior antitumor activity in vivo via CD1d-dependent immune responses in the tumor microenvironment. Specifically, we show that CAR-NKT cells eliminate CD1d-expressing M2-like macrophages. In addition, CAR-NKT cells promote epitope spreading and activation of endogenous T cell responses against tumor-associated neoantigens. Finally, we observed that CAR-NKT cells can co-express PD1 and TIM3 and show an exhaustion phenotype in a model of high tumor burden. PD1 blockade as well as vaccination augmented the antitumor activity of CAR-NKT cells. In summary, our results demonstrate the multimodal function of CAR-NKT cells in solid tumors, further supporting the rationale for developing CAR-NKT therapies in the clinic. Dotti and colleagues show that chimeric antigen receptor (CAR) natural killer T cells have superior antitumor activity compared with CAR-T cells, mediated through the elimination of CD1d-expressing tumor-associated macrophages, activation of dendritic cells and promotion of endogenous T cell responses.","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":"5 11","pages":"1607-1621"},"PeriodicalIF":23.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cancer","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s43018-024-00830-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Human natural killer T (NKT) cells have been proposed as a promising cell platform for chimeric antigen receptor (CAR) therapy in solid tumors. Here we generated murine CAR-NKT cells and compared them with CAR-T cells in immune-competent mice. Both CAR-NKT cells and CAR-T cells showed similar antitumor effects in vitro, but CAR-NKT cells showed superior antitumor activity in vivo via CD1d-dependent immune responses in the tumor microenvironment. Specifically, we show that CAR-NKT cells eliminate CD1d-expressing M2-like macrophages. In addition, CAR-NKT cells promote epitope spreading and activation of endogenous T cell responses against tumor-associated neoantigens. Finally, we observed that CAR-NKT cells can co-express PD1 and TIM3 and show an exhaustion phenotype in a model of high tumor burden. PD1 blockade as well as vaccination augmented the antitumor activity of CAR-NKT cells. In summary, our results demonstrate the multimodal function of CAR-NKT cells in solid tumors, further supporting the rationale for developing CAR-NKT therapies in the clinic. Dotti and colleagues show that chimeric antigen receptor (CAR) natural killer T cells have superior antitumor activity compared with CAR-T cells, mediated through the elimination of CD1d-expressing tumor-associated macrophages, activation of dendritic cells and promotion of endogenous T cell responses.
期刊介绍:
Cancer is a devastating disease responsible for millions of deaths worldwide. However, many of these deaths could be prevented with improved prevention and treatment strategies. To achieve this, it is crucial to focus on accurate diagnosis, effective treatment methods, and understanding the socioeconomic factors that influence cancer rates.
Nature Cancer aims to serve as a unique platform for sharing the latest advancements in cancer research across various scientific fields, encompassing life sciences, physical sciences, applied sciences, and social sciences. The journal is particularly interested in fundamental research that enhances our understanding of tumor development and progression, as well as research that translates this knowledge into clinical applications through innovative diagnostic and therapeutic approaches. Additionally, Nature Cancer welcomes clinical studies that inform cancer diagnosis, treatment, and prevention, along with contributions exploring the societal impact of cancer on a global scale.
In addition to publishing original research, Nature Cancer will feature Comments, Reviews, News & Views, Features, and Correspondence that hold significant value for the diverse field of cancer research.