Artem S Sherudillo, Alexander A Kalyagin, Lubov A Antina, Mikhail B Berezin, Elena V Antina
{"title":"Aggregation Behavior of CHR-bis(BODIPY) Bichromophores in THF-water Mixtures: Effect of Linking Positions and Aryl-spacer Substituents.","authors":"Artem S Sherudillo, Alexander A Kalyagin, Lubov A Antina, Mikhail B Berezin, Elena V Antina","doi":"10.1007/s10895-024-03980-7","DOIUrl":null,"url":null,"abstract":"<p><p>Aggregation-caused quenching effect (ACQ) greatly limits the practical use of many organic luminophores in biomedicine, optics and electronics. The comparative analysis of aggregation characteristics of CHR-bis(BODIPY) bichromophores 1-6 with R = H, Ph, MeOPh and various linking positions (α,α-; α,β-; β,β- and β',β'-) in THF-water mixtures with different water fractions or dye concentrations is first presented in this article. Both the linking style 1-4 and the arylation of the spacer with phenyl (Ph-) 5 or methoxyphenyl (MeOPh-) 6 substituents strongly affect the formation of luminophore aggregated forms in binary THF-water mixtures. The α,α-and β,β-isomers (1 and 3) form non-fluorescent H-type aggregates in THF-water mixtures with f<sub>w</sub> > 70%. The α,β-; β',β'-isomers (2, 4) and the MeOPh-substituted β,β-bichromophore 6 are characterized by predominant formation fluorescent aggregates. All bichromophores are characterized by the presence of residual amounts of non-aggregated forms in binary mixtures with maximum water content. The results are useful for controlling the aggregation behavior and spectral characteristics of CHR-bis(BODIPY) bichromophores in aqueous-organic media, which is important in the development of biomarkers and PDT agents.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03980-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Aggregation-caused quenching effect (ACQ) greatly limits the practical use of many organic luminophores in biomedicine, optics and electronics. The comparative analysis of aggregation characteristics of CHR-bis(BODIPY) bichromophores 1-6 with R = H, Ph, MeOPh and various linking positions (α,α-; α,β-; β,β- and β',β'-) in THF-water mixtures with different water fractions or dye concentrations is first presented in this article. Both the linking style 1-4 and the arylation of the spacer with phenyl (Ph-) 5 or methoxyphenyl (MeOPh-) 6 substituents strongly affect the formation of luminophore aggregated forms in binary THF-water mixtures. The α,α-and β,β-isomers (1 and 3) form non-fluorescent H-type aggregates in THF-water mixtures with fw > 70%. The α,β-; β',β'-isomers (2, 4) and the MeOPh-substituted β,β-bichromophore 6 are characterized by predominant formation fluorescent aggregates. All bichromophores are characterized by the presence of residual amounts of non-aggregated forms in binary mixtures with maximum water content. The results are useful for controlling the aggregation behavior and spectral characteristics of CHR-bis(BODIPY) bichromophores in aqueous-organic media, which is important in the development of biomarkers and PDT agents.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.