Samuel Amintas, Grégoire Cullot, Mehdi Boubaddi, Julie Rébillard, Laura Karembe, Béatrice Turcq, Valérie Prouzet-Mauléon, Aurélie Bedel, François Moreau-Gaudry, David Cappellen, Sandrine Dabernat
{"title":"Integrating allele-specific PCR with CRISPR-Cas13a for sensitive KRAS mutation detection in pancreatic cancer.","authors":"Samuel Amintas, Grégoire Cullot, Mehdi Boubaddi, Julie Rébillard, Laura Karembe, Béatrice Turcq, Valérie Prouzet-Mauléon, Aurélie Bedel, François Moreau-Gaudry, David Cappellen, Sandrine Dabernat","doi":"10.1186/s13036-024-00450-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The clustered regulatory interspaced short palindromic repeats (CRISPR)-Cas13a system has strong potential for highly sensitive detection of exogenous sequences. The detection of KRAS<sup>G12</sup> point mutations with low allele frequencies may prove powerful for the formal diagnosis of pancreatic ductal adenocarcinoma (PDAC).</p><p><strong>Results: </strong>We implemented preamplification of KRAS alleles (wild-type and mutant) to reveal the presence of mutant KRAS with CRISPR-Cas13a. The discrimination of KRAS<sup>G12D</sup> from KRAS<sup>WT</sup> was poor for the generic KRAS preamplification templates and depended on the crRNA design, the secondary structure of the target templates, and the nature of the mismatches between the guide and the templates. To improve the specificity, we used an allele-specific PCR preamplification method called CASPER (Cas13a Allele-Specific PCR Enzyme Recognition). CASPER enabled specific and sensitive detection of KRAS<sup>G12D</sup> with low DNA input. CASPER detected KRAS mutations in DNA extracted from patients' pancreatic ultrasound-guided fine-needle aspiration fluid.</p><p><strong>Conclusion: </strong>CASPER is easy to implement and is a versatile and reliable method that is virtually adaptable to any point mutation.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"18 1","pages":"53"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445877/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-024-00450-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The clustered regulatory interspaced short palindromic repeats (CRISPR)-Cas13a system has strong potential for highly sensitive detection of exogenous sequences. The detection of KRASG12 point mutations with low allele frequencies may prove powerful for the formal diagnosis of pancreatic ductal adenocarcinoma (PDAC).
Results: We implemented preamplification of KRAS alleles (wild-type and mutant) to reveal the presence of mutant KRAS with CRISPR-Cas13a. The discrimination of KRASG12D from KRASWT was poor for the generic KRAS preamplification templates and depended on the crRNA design, the secondary structure of the target templates, and the nature of the mismatches between the guide and the templates. To improve the specificity, we used an allele-specific PCR preamplification method called CASPER (Cas13a Allele-Specific PCR Enzyme Recognition). CASPER enabled specific and sensitive detection of KRASG12D with low DNA input. CASPER detected KRAS mutations in DNA extracted from patients' pancreatic ultrasound-guided fine-needle aspiration fluid.
Conclusion: CASPER is easy to implement and is a versatile and reliable method that is virtually adaptable to any point mutation.
期刊介绍:
Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to:
Synthetic biology and cellular design
Biomolecular, cellular and tissue engineering
Bioproduction and metabolic engineering
Biosensors
Ecological and environmental engineering
Biological engineering education and the biodesign process
As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels.
Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.