Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) Spectroscopy Analysis of Saliva as a Diagnostic Specimen for Rapid Classification of Oral Squamous Cell Carcinoma Using Chemometrics Methods.
{"title":"Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) Spectroscopy Analysis of Saliva as a Diagnostic Specimen for Rapid Classification of Oral Squamous Cell Carcinoma Using Chemometrics Methods.","authors":"Mohammad Mahdi Khanmohammadi Khorrami, Nozhan Azimi, Maryam Koopaie, Mahsa Mohammadi, Soheila Manifar, Mohammadreza Khanmohammadi Khorrami","doi":"10.1080/07357907.2024.2403086","DOIUrl":null,"url":null,"abstract":"<p><strong>Background & aim: </strong>Recent advancements in analytical techniques have highlighted the potential of Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy as a quick, cost-effective, non-invasive, and efficient tool for cancer diagnosis. This study aims to evaluate the effectiveness of ATR-FTIR spectroscopy in combination with supervised machine learning classification models for diagnosing OSCC using saliva samples.</p><p><strong>Methods & materials: </strong>Eighty unstimulated whole saliva samples from OSCC patients and healthy controls were collected. The ATR-FTIR spectroscopy was performed and spectral data were used to classify healthy and OSCC groups. The data were analyzed using machine learning classification methods such as Partial Least Squares-Discriminant Analysis (PLS-DA) and Support Vector Machine Classification (SVM-C). The classification performance of the models was evaluated by computing sensitivity, specificity, precision, and accuracy.</p><p><strong>Results: </strong>The samples were classified into two classes based on their spectral data. The obtained results demonstrate a high level of accuracy in the prediction sets of the PLS-DA and SVM-C models, with accuracy values of 0.960 and 0.962, respectively. The OSCC group sensitivity values for both PLS-DA and SVM-C models was 1.00, respectively.</p><p><strong>Conclusion: </strong>The study indicates that ATR-FTIR spectroscopy, combined with chemometrics, is a potential method for the non-invasive diagnosis of OSCC using saliva samples. This method achieved high accuracy and the findings of this study suggest that ATR-FTIR spectroscopy could be further developed for clinical applications in OSCC diagnosis.</p>","PeriodicalId":9463,"journal":{"name":"Cancer Investigation","volume":" ","pages":"815-826"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/07357907.2024.2403086","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background & aim: Recent advancements in analytical techniques have highlighted the potential of Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy as a quick, cost-effective, non-invasive, and efficient tool for cancer diagnosis. This study aims to evaluate the effectiveness of ATR-FTIR spectroscopy in combination with supervised machine learning classification models for diagnosing OSCC using saliva samples.
Methods & materials: Eighty unstimulated whole saliva samples from OSCC patients and healthy controls were collected. The ATR-FTIR spectroscopy was performed and spectral data were used to classify healthy and OSCC groups. The data were analyzed using machine learning classification methods such as Partial Least Squares-Discriminant Analysis (PLS-DA) and Support Vector Machine Classification (SVM-C). The classification performance of the models was evaluated by computing sensitivity, specificity, precision, and accuracy.
Results: The samples were classified into two classes based on their spectral data. The obtained results demonstrate a high level of accuracy in the prediction sets of the PLS-DA and SVM-C models, with accuracy values of 0.960 and 0.962, respectively. The OSCC group sensitivity values for both PLS-DA and SVM-C models was 1.00, respectively.
Conclusion: The study indicates that ATR-FTIR spectroscopy, combined with chemometrics, is a potential method for the non-invasive diagnosis of OSCC using saliva samples. This method achieved high accuracy and the findings of this study suggest that ATR-FTIR spectroscopy could be further developed for clinical applications in OSCC diagnosis.
期刊介绍:
Cancer Investigation is one of the most highly regarded and recognized journals in the field of basic and clinical oncology. It is designed to give physicians a comprehensive resource on the current state of progress in the cancer field as well as a broad background of reliable information necessary for effective decision making. In addition to presenting original papers of fundamental significance, it also publishes reviews, essays, specialized presentations of controversies, considerations of new technologies and their applications to specific laboratory problems, discussions of public issues, miniseries on major topics, new and experimental drugs and therapies, and an innovative letters to the editor section. One of the unique features of the journal is its departmentalized editorial sections reporting on more than 30 subject categories covering the broad spectrum of specialized areas that together comprise the field of oncology. Edited by leading physicians and research scientists, these sections make Cancer Investigation the prime resource for clinicians seeking to make sense of the sometimes-overwhelming amount of information available throughout the field. In addition to its peer-reviewed clinical research, the journal also features translational studies that bridge the gap between the laboratory and the clinic.