Nicole E.-P. Stark, Mark T. Begonia, Caitlyn Jung, Steven Rowson
{"title":"How Shell Add-On Products Influence Varsity Football Helmet Performance?","authors":"Nicole E.-P. Stark, Mark T. Begonia, Caitlyn Jung, Steven Rowson","doi":"10.1007/s10439-024-03627-5","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>The study purpose was to investigate the laboratory-based performance of three commercially available shell add-on products under varsity-level impact conditions.</p><h3>Methods</h3><p>Pendulum impact tests were conducted at multiple locations (front, front boss, rear, side) and speeds (3.1, 4.9, 6.4 m/s) using two helmet models. Tests were performed with a single add-on configuration for baseline comparisons and a double add-on configuration to simulate collisions with both players wearing shell add-ons. A linear mixed-effect model was used to evaluate peak linear acceleration (PLA), peak rotational acceleration (PRA), and concussion risk, which was calculated from a bivariate injury risk function, based on shell add-on and test configuration.</p><h3>Results</h3><p>All shell add-ons decreased peak head kinematics and injury risk compared to controls, with the Guardian NXT producing the largest reductions (PLA: 7.9%, PRA: 14.1%, Risk: 34.1%) compared to the SAFR Helmet Cover (PLA: 4.5%, PRA: 9.3%, Risk: 24.7%) and Guardian XT (PLA: 3.2%, PRA: 5.0%, Risk: 15.5%). The same trend was observed in the double add-on test configuration. However, the Guardian NXT (PLA: 17.1%; PRA: 11.5%; Risk: 62.8%) and SAFR Helmet Cover (PLA: 12.2%; PRA: 9.1%; Risk: 52.2%) produced larger reductions in peak head kinematics and injury risk than the Guardian XT (PLA: 5.7%, PRA: 2.2%, Risk: 21.8%).</p><h3>Conclusion</h3><p>In laboratory-based assessments that simulated varsity-level impact conditions, the Guardian NXT was associated with larger reductions in PLA, PRA, and injury risk compared to the SAFR Helmet Cover and Guardian XT. Although shell add-ons can enhance head protection, helmet model selection should be prioritized.</p></div>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511751/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10439-024-03627-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The study purpose was to investigate the laboratory-based performance of three commercially available shell add-on products under varsity-level impact conditions.
Methods
Pendulum impact tests were conducted at multiple locations (front, front boss, rear, side) and speeds (3.1, 4.9, 6.4 m/s) using two helmet models. Tests were performed with a single add-on configuration for baseline comparisons and a double add-on configuration to simulate collisions with both players wearing shell add-ons. A linear mixed-effect model was used to evaluate peak linear acceleration (PLA), peak rotational acceleration (PRA), and concussion risk, which was calculated from a bivariate injury risk function, based on shell add-on and test configuration.
Results
All shell add-ons decreased peak head kinematics and injury risk compared to controls, with the Guardian NXT producing the largest reductions (PLA: 7.9%, PRA: 14.1%, Risk: 34.1%) compared to the SAFR Helmet Cover (PLA: 4.5%, PRA: 9.3%, Risk: 24.7%) and Guardian XT (PLA: 3.2%, PRA: 5.0%, Risk: 15.5%). The same trend was observed in the double add-on test configuration. However, the Guardian NXT (PLA: 17.1%; PRA: 11.5%; Risk: 62.8%) and SAFR Helmet Cover (PLA: 12.2%; PRA: 9.1%; Risk: 52.2%) produced larger reductions in peak head kinematics and injury risk than the Guardian XT (PLA: 5.7%, PRA: 2.2%, Risk: 21.8%).
Conclusion
In laboratory-based assessments that simulated varsity-level impact conditions, the Guardian NXT was associated with larger reductions in PLA, PRA, and injury risk compared to the SAFR Helmet Cover and Guardian XT. Although shell add-ons can enhance head protection, helmet model selection should be prioritized.
期刊介绍:
Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.