Effect of UV-C Irradiation on Growth, Photosynthetic Pigments, and Lipid Profile of Chlorella sorokiniana.

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Pinky Dotaniya, Rajnandinee Sharma, G P Singh, Shikha Gupta
{"title":"Effect of UV-C Irradiation on Growth, Photosynthetic Pigments, and Lipid Profile of Chlorella sorokiniana.","authors":"Pinky Dotaniya, Rajnandinee Sharma, G P Singh, Shikha Gupta","doi":"10.1007/s12010-024-05061-8","DOIUrl":null,"url":null,"abstract":"<p><p>Chlorella sorokiniana holds significant industrial relevance owing to its lipid profile. Consequently, the objective of this investigation was to enhance growth, lipid content, and photosynthetic pigment production through the application of UV-C irradiation. The growth parameters of microalgae demonstrated an increase in response to concentration. After 35 days of incubation, cells exposed to UV-C for 8 min produced the most biomass at 2.2 g/l. Additionally, the chlorophyll content demonstrated a comparable pattern, with the highest concentrations of chlorophyll a (4.99 mg/l), chlorophyll b (6.22 mg/l), and total chlorophyll (11.21 mg/l) observed in cells incubated for 35 days and exposed to UV-C for 8 min. The lipid profile, nevertheless, demonstrated minor fluctuations. Specifically, the relative abundance of frequently occurring lipid compounds was found to be greater in cells treated with UV-C compared to the control group, and the most significant increase was obtained in 15-day culture exposed to UV-C for 8 min. However, after 35 days of incubation, this abundance decreased in cells exposed to UV-C for more than 4 min. Additionally, the observation of specific lipid compounds presented solely in cells obtained from algal cultures treated with UV-C was made. Consequently, drawing from the results obtained in the current investigation, it is possible to deduce that UV-C can be utilised to augment the overall development and yield of significant metabolites in microalgae. Furthermore, these microalgae can be converted into single-cell bioreactors to facilitate the production of lipids utilised in a variety of applications, a process that could be refined to cater to industrial demands.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05061-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chlorella sorokiniana holds significant industrial relevance owing to its lipid profile. Consequently, the objective of this investigation was to enhance growth, lipid content, and photosynthetic pigment production through the application of UV-C irradiation. The growth parameters of microalgae demonstrated an increase in response to concentration. After 35 days of incubation, cells exposed to UV-C for 8 min produced the most biomass at 2.2 g/l. Additionally, the chlorophyll content demonstrated a comparable pattern, with the highest concentrations of chlorophyll a (4.99 mg/l), chlorophyll b (6.22 mg/l), and total chlorophyll (11.21 mg/l) observed in cells incubated for 35 days and exposed to UV-C for 8 min. The lipid profile, nevertheless, demonstrated minor fluctuations. Specifically, the relative abundance of frequently occurring lipid compounds was found to be greater in cells treated with UV-C compared to the control group, and the most significant increase was obtained in 15-day culture exposed to UV-C for 8 min. However, after 35 days of incubation, this abundance decreased in cells exposed to UV-C for more than 4 min. Additionally, the observation of specific lipid compounds presented solely in cells obtained from algal cultures treated with UV-C was made. Consequently, drawing from the results obtained in the current investigation, it is possible to deduce that UV-C can be utilised to augment the overall development and yield of significant metabolites in microalgae. Furthermore, these microalgae can be converted into single-cell bioreactors to facilitate the production of lipids utilised in a variety of applications, a process that could be refined to cater to industrial demands.

紫外线-C 照射对小球藻生长、光合色素和脂质的影响
小球藻(Chlorella sorokiniana)因其脂质特征而具有重要的工业意义。因此,本研究旨在通过紫外线-C 照射来提高生长、脂质含量和光合色素产量。微藻的生长参数显示出对浓度的响应增加。培养 35 天后,紫外线照射 8 分钟的细胞产生的生物量最多,达到 2.2 克/升。此外,叶绿素含量也显示出类似的模式,在培养 35 天并暴露于紫外线-C 8 分钟的细胞中,叶绿素 a(4.99 毫克/升)、叶绿素 b(6.22 毫克/升)和总叶绿素(11.21 毫克/升)的浓度最高。然而,脂质谱图显示出轻微的波动。具体来说,与对照组相比,经紫外线-C 处理的细胞中经常出现的脂质化合物的相对丰度较高,其中紫外线-C 照射 8 分钟的 15 天培养物中的丰度增幅最大。然而,培养 35 天后,紫外线照射时间超过 4 分钟的细胞中这种丰度有所下降。此外,还观察到特定的脂质化合物仅出现在经紫外线-C 处理的藻类培养物细胞中。因此,从目前的研究结果可以推断出,紫外线-C 可以促进微藻中重要代谢物的整体发展和产量。此外,这些微藻还可转化为单细胞生物反应器,以促进各种应用中的脂类生产,这一过程可加以改进,以满足工业需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信