Clayton W. Stocker, Stephanie M. Bamford, Miki Jahn, Geoffrey P. F. Mazué, Amanda K. Pettersen, Daniel Ritchie, Alexander M. Rubin, Daniel W. A. Noble, Frank Seebacher
{"title":"The Effect of Temperature Variability on Biological Responses of Ectothermic Animals—A Meta-Analysis","authors":"Clayton W. Stocker, Stephanie M. Bamford, Miki Jahn, Geoffrey P. F. Mazué, Amanda K. Pettersen, Daniel Ritchie, Alexander M. Rubin, Daniel W. A. Noble, Frank Seebacher","doi":"10.1111/ele.14511","DOIUrl":null,"url":null,"abstract":"<p>Climate change is altering temperature means and variation, and both need to be considered in predictions underpinning conservation. However, there is no consensus in the literature regarding the effects of temperature fluctuations on biological functions. Fluctuations may affect biological responses because of inequalities from non-linear responses, endocrine regulation or exposure to damaging temperatures. Here we establish the current state of knowledge of how temperature fluctuations impact biological responses within individuals and populations compared to constant temperatures with the same mean. We conducted a meta-analysis of 143 studies on ectothermic animals (1492 effect sizes, 118 species). In this study, 89% of effect sizes were derived from diel cycles, but there were no significant differences between diel cycles and shorter (<8 h) or longer (>48 h) cycles in their effect on biological responses. We show that temperature fluctuations have little effect overall on trait mean and variance. Nonetheless, temperature fluctuations can be stressful: fluctuations increased ‘gene expression’ in aquatic animals, which was driven mainly by increased hsp70. Fluctuating temperatures also decreased longevity, and increased amplitudes had negative effects on population responses in aquatic organisms. We conclude that mean temperatures and extreme events such as heat waves are important to consider, but regular (particularly diel) temperature fluctuations are less so.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 9","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14511","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.14511","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change is altering temperature means and variation, and both need to be considered in predictions underpinning conservation. However, there is no consensus in the literature regarding the effects of temperature fluctuations on biological functions. Fluctuations may affect biological responses because of inequalities from non-linear responses, endocrine regulation or exposure to damaging temperatures. Here we establish the current state of knowledge of how temperature fluctuations impact biological responses within individuals and populations compared to constant temperatures with the same mean. We conducted a meta-analysis of 143 studies on ectothermic animals (1492 effect sizes, 118 species). In this study, 89% of effect sizes were derived from diel cycles, but there were no significant differences between diel cycles and shorter (<8 h) or longer (>48 h) cycles in their effect on biological responses. We show that temperature fluctuations have little effect overall on trait mean and variance. Nonetheless, temperature fluctuations can be stressful: fluctuations increased ‘gene expression’ in aquatic animals, which was driven mainly by increased hsp70. Fluctuating temperatures also decreased longevity, and increased amplitudes had negative effects on population responses in aquatic organisms. We conclude that mean temperatures and extreme events such as heat waves are important to consider, but regular (particularly diel) temperature fluctuations are less so.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.