Zhenyu Hu , Li Lin , Yi Jiang , Lianshan Sun , Wanqiang Liu , Qingshuang Wang , Fang Wang
{"title":"Reveal the source of protons in aqueous hydrogen proton battery","authors":"Zhenyu Hu , Li Lin , Yi Jiang , Lianshan Sun , Wanqiang Liu , Qingshuang Wang , Fang Wang","doi":"10.1016/j.ensm.2024.103820","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we have discovered and investigated the reaction mechanism of Aqueous Hydrogen Proton Battery (AHPB), which differ from conventional rocking-chair batteries. The hydrogen protons in the battery reaction is provided by the dissociation of H<sub>2</sub>O molecules in the electrolyte. Thus, the charging and discharging processes of the battery are also accompanied by changes in electrolyte concentration. To explore this, we have designed a AHPBs with a 2 M Zn(ClO<sub>4</sub>)<sub>2</sub> electrolyte. The experimental results demonstrate excellent performance of the AHPBs, with a discharge specific capacity of up to 700.6 mAh <em>g</em><sup>−1</sup> and a charge-discharge power conversion efficiency of 83.638 %. Both experimental and simulation results confirm that <em>H</em><sup>+</sup> in the battery is primarily provided by H<sub>2</sub>O molecules solvating Zn<sup>2+</sup>. As the electrolyte concentration increases, ClO<sub>4</sub><sup>−</sup> replaces some of the solvating H<sub>2</sub>O molecules of Zn<sup>2+</sup>, resulting in the remaining unsaturated solvating H<sub>2</sub>O molecules having a stronger propensity for deprotonation, thus facilitating the release of <em>H</em><sup>+</sup>. This elucidates the specific source of <em>H</em><sup>+</sup> in AHPBs.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"73 ","pages":"Article 103820"},"PeriodicalIF":18.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829724006469","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we have discovered and investigated the reaction mechanism of Aqueous Hydrogen Proton Battery (AHPB), which differ from conventional rocking-chair batteries. The hydrogen protons in the battery reaction is provided by the dissociation of H2O molecules in the electrolyte. Thus, the charging and discharging processes of the battery are also accompanied by changes in electrolyte concentration. To explore this, we have designed a AHPBs with a 2 M Zn(ClO4)2 electrolyte. The experimental results demonstrate excellent performance of the AHPBs, with a discharge specific capacity of up to 700.6 mAh g−1 and a charge-discharge power conversion efficiency of 83.638 %. Both experimental and simulation results confirm that H+ in the battery is primarily provided by H2O molecules solvating Zn2+. As the electrolyte concentration increases, ClO4− replaces some of the solvating H2O molecules of Zn2+, resulting in the remaining unsaturated solvating H2O molecules having a stronger propensity for deprotonation, thus facilitating the release of H+. This elucidates the specific source of H+ in AHPBs.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.