{"title":"The crucial factor for microplastics removal in large-scale subsurface-flow constructed wetlands","authors":"Shiwen Zhang, Tianshuai Li, Huijun Xie, Maoyong Song, Shengxuan Huang, Zizhang Guo, Zhen Hu, Jian Zhang","doi":"10.1016/j.jhazmat.2024.136023","DOIUrl":null,"url":null,"abstract":"Constructed wetlands (CWs) are an effective method for removing microplastics (MPs). Nevertheless, the understanding of the impact of various parameters on MPs removal within CWs remains incomplete. Through field investigations of large-scale CWs and the application of machine learning methods with an interpretable attribution technique (the Shapley Additive Explanation), we investigated the critical factors influencing MPs removal within CWs. The MPs abundance in the influent and the inlet of Z-CW (400.1±20.8 items/L and 699.6±50.6 items/kg) was significantly higher compared to that in M-CW (138.8±20.5 items/L and 166.5±36.8 items/kg), with no significant difference observed in the effluent. The primary characteristic of MPs is their fibrous and transparent appearance. The MPs removal range from 87.9–95.5%, influenced by the types and characteristics of MPs, physical and chemical parameters, biofilms, and different processes. Among these factors, dissolved organic carbon with high humic content, aromaticity, and carboxyl abundance may serve as a crucial factor in MPs removal. The results of this study highlight the significance of physical and chemical parameters for the MPs removal in CWs, providing the necessary theoretical data for the construction of future large-scale engineering applications.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"220 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136023","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Constructed wetlands (CWs) are an effective method for removing microplastics (MPs). Nevertheless, the understanding of the impact of various parameters on MPs removal within CWs remains incomplete. Through field investigations of large-scale CWs and the application of machine learning methods with an interpretable attribution technique (the Shapley Additive Explanation), we investigated the critical factors influencing MPs removal within CWs. The MPs abundance in the influent and the inlet of Z-CW (400.1±20.8 items/L and 699.6±50.6 items/kg) was significantly higher compared to that in M-CW (138.8±20.5 items/L and 166.5±36.8 items/kg), with no significant difference observed in the effluent. The primary characteristic of MPs is their fibrous and transparent appearance. The MPs removal range from 87.9–95.5%, influenced by the types and characteristics of MPs, physical and chemical parameters, biofilms, and different processes. Among these factors, dissolved organic carbon with high humic content, aromaticity, and carboxyl abundance may serve as a crucial factor in MPs removal. The results of this study highlight the significance of physical and chemical parameters for the MPs removal in CWs, providing the necessary theoretical data for the construction of future large-scale engineering applications.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.