Li-ion Exchange-Driven Interfacial Buffer Layer for All-Solid-State Lithium Metal Batteries

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Songyi Han, Shuling Liu, Junchao Chen, Yunpeng Zhu, Jingze Zhang, Yongmin Wu, Shangbo Yu, Weiping Tang, Lei Zhu, Xiaowei Wang
{"title":"Li-ion Exchange-Driven Interfacial Buffer Layer for All-Solid-State Lithium Metal Batteries","authors":"Songyi Han,&nbsp;Shuling Liu,&nbsp;Junchao Chen,&nbsp;Yunpeng Zhu,&nbsp;Jingze Zhang,&nbsp;Yongmin Wu,&nbsp;Shangbo Yu,&nbsp;Weiping Tang,&nbsp;Lei Zhu,&nbsp;Xiaowei Wang","doi":"10.1002/adfm.202405152","DOIUrl":null,"url":null,"abstract":"<p>The goal of achieving batteries with high energy density and high safety profile has been a driving force in developing all-solid-state lithium metal batteries (ASSLMBs). However, the complex issues arising from the interfacial interaction between lithium anode/cathode and solid-state electrolytes (SSE) have hindered the progress of ASSLMBs. This study presents a strategy for constructing an organic/inorganic buffer layer via employing Li-ion exchanging chemistry of H<sub>1.6</sub>Mn<sub>1.6</sub>O<sub>4</sub> (HMO) with a flexible matrix of polyethylene oxide (PEO). The buffer layer shows a remarkable ion conductivity of 3.21 × 10<sup>−4</sup> S cm<sup>−1</sup> at 25 °C originating from the exceptional Li<sup>+</sup>-H<sup>+</sup> ion exchange capability of HMO. This PEO/HMO buffer layer not only establishes an intimate physical contact between the Li anode/cathode and the SSE but also functions as a dynamic Li<sup>+</sup> transfer station to facilitate Li<sup>+</sup> movement through the interfaces improving interfacial stability. By pairing with cathodes of LiFePO<sub>4</sub> (LFP) and LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811), the ASSLMBs feature high-rate capability and stable cycling performance with low polarization. This marks the utilization of HMO as a superior interfacial material to replace conventional lithium salts, with improved ion transport, decreased polarization, and enhanced overall performances. This constitutes a significant advancement toward the next-generation energy storage solutions for ASSLMBs.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"34 46","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202405152","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of achieving batteries with high energy density and high safety profile has been a driving force in developing all-solid-state lithium metal batteries (ASSLMBs). However, the complex issues arising from the interfacial interaction between lithium anode/cathode and solid-state electrolytes (SSE) have hindered the progress of ASSLMBs. This study presents a strategy for constructing an organic/inorganic buffer layer via employing Li-ion exchanging chemistry of H1.6Mn1.6O4 (HMO) with a flexible matrix of polyethylene oxide (PEO). The buffer layer shows a remarkable ion conductivity of 3.21 × 10−4 S cm−1 at 25 °C originating from the exceptional Li+-H+ ion exchange capability of HMO. This PEO/HMO buffer layer not only establishes an intimate physical contact between the Li anode/cathode and the SSE but also functions as a dynamic Li+ transfer station to facilitate Li+ movement through the interfaces improving interfacial stability. By pairing with cathodes of LiFePO4 (LFP) and LiNi0.8Co0.1Mn0.1O2 (NCM811), the ASSLMBs feature high-rate capability and stable cycling performance with low polarization. This marks the utilization of HMO as a superior interfacial material to replace conventional lithium salts, with improved ion transport, decreased polarization, and enhanced overall performances. This constitutes a significant advancement toward the next-generation energy storage solutions for ASSLMBs.

Abstract Image

Abstract Image

Abstract Image

全固态金属锂电池的锂离子交换驱动界面缓冲层
实现高能量密度和高安全性电池的目标一直是开发全固态锂金属电池(ASSLMB)的驱动力。然而,锂阳极/阴极与固态电解质(SSE)之间的界面相互作用所产生的复杂问题阻碍了全固态锂金属电池的发展。本研究提出了一种利用 H1.6Mn1.6O4 (HMO) 与聚氧化乙烯 (PEO) 柔性基质的锂离子交换化学作用构建有机/无机缓冲层的策略。由于 HMO 具有出色的 Li+-H+ 离子交换能力,缓冲层在 25 °C 时的离子导电率达到了 3.21 × 10-4 S cm-1。这种 PEO/HMO 缓冲层不仅能在锂阳极/阴极和 SSE 之间建立亲密的物理接触,还能充当动态锂离子中转站,促进锂离子在界面中的移动,从而提高界面稳定性。通过与 LiFePO4 (LFP) 和 LiNi0.8Co0.1Mn0.1O2 (NCM811) 阴极配对,ASSLMB 具有高倍率能力和稳定的低极化循环性能。这标志着 HMO 已成为替代传统锂盐的优质界面材料,可改善离子传输、降低极化和提高整体性能。这是向新一代 ASSLMB 储能解决方案迈出的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
文献相关原料
公司名称
产品信息
阿拉丁
LiOH·H2O
阿拉丁
MnCO3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信