Floriane Jamoteau, Emmanuel Doelsch, Nithavong Cam, Clément Levard, Thierry Woignier, Adrien Boulineau, François Saint-Antonin, Sufal Swaraj, Ghislain Gassier, Adrien Duvivier, Daniel Borschneck, Marie-Laure Pons, Perrine Chaurand, Vladimir Vidal, Nicolas Brouilly, Isabelle Basile-Doelsch
{"title":"Cultivation reduces quantities of mineral-organic associations in the form of amorphous coprecipitates","authors":"Floriane Jamoteau, Emmanuel Doelsch, Nithavong Cam, Clément Levard, Thierry Woignier, Adrien Boulineau, François Saint-Antonin, Sufal Swaraj, Ghislain Gassier, Adrien Duvivier, Daniel Borschneck, Marie-Laure Pons, Perrine Chaurand, Vladimir Vidal, Nicolas Brouilly, Isabelle Basile-Doelsch","doi":"10.5194/egusphere-2024-2933","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Mineral-organic associations are crucial carbon and nutrient reservoirs in soils. However, soil cultivation disrupts these associations, leading to carbon loss and reduced soil fertility. Although, identifying the specific type(s) of mineral-organic associations susceptible to destruction or transformation upon cropping remains challenging, it is essential for devising strategies to preserve organic matter in croplands. Here we aimed to determine the predominant mineral-organic associations and to identify which types of associations are transformed upon cultivation. To achieve this, we sampled an andosol from both a forested and a cultivated area. We then analyzed cultivation-induced changes in soil physicochemical parameters and characterized mineral-organic associations using an array of spectro-microscopic techniques (TEM-EDX, TEM-EELS, and STXM), for comprehensive structural and compositional analysis. At the micro and nanoscale, we observed mineral-organic associations in the form of coprecipitates composed of amorphous oligomers containing Al, Si, and Fe (referred to as nanoCLICs for nanosized coprecipitates of inorganic oligomers with organics). Down to a few hundred nanometers, the nanoCLICs displayed elemental enrichments with C+Al+Si, C+Fe+Al+Si, or Al+Si dominance with less C. In contrast, organic matter exhibited various C speciation without compound-specific enrichments. These findings suggest that mineral-organic associations in andosols are nanoCLICs-type coprecipitates rather than organic matter associated solely with secondary minerals. NanoCLICs were present in both forest and crop andosols, and while cropping led to a 50 % decrease in nanoCLICs, it did not alter their nature. This novel conceptualization of mineral-organic associations as nanoCLICs shifts our understanding of their persistence in andosols and demonstrates their vulnerability to crop-induced changes.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"43 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-2933","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Mineral-organic associations are crucial carbon and nutrient reservoirs in soils. However, soil cultivation disrupts these associations, leading to carbon loss and reduced soil fertility. Although, identifying the specific type(s) of mineral-organic associations susceptible to destruction or transformation upon cropping remains challenging, it is essential for devising strategies to preserve organic matter in croplands. Here we aimed to determine the predominant mineral-organic associations and to identify which types of associations are transformed upon cultivation. To achieve this, we sampled an andosol from both a forested and a cultivated area. We then analyzed cultivation-induced changes in soil physicochemical parameters and characterized mineral-organic associations using an array of spectro-microscopic techniques (TEM-EDX, TEM-EELS, and STXM), for comprehensive structural and compositional analysis. At the micro and nanoscale, we observed mineral-organic associations in the form of coprecipitates composed of amorphous oligomers containing Al, Si, and Fe (referred to as nanoCLICs for nanosized coprecipitates of inorganic oligomers with organics). Down to a few hundred nanometers, the nanoCLICs displayed elemental enrichments with C+Al+Si, C+Fe+Al+Si, or Al+Si dominance with less C. In contrast, organic matter exhibited various C speciation without compound-specific enrichments. These findings suggest that mineral-organic associations in andosols are nanoCLICs-type coprecipitates rather than organic matter associated solely with secondary minerals. NanoCLICs were present in both forest and crop andosols, and while cropping led to a 50 % decrease in nanoCLICs, it did not alter their nature. This novel conceptualization of mineral-organic associations as nanoCLICs shifts our understanding of their persistence in andosols and demonstrates their vulnerability to crop-induced changes.
SoilAgricultural and Biological Sciences-Soil Science
CiteScore
10.80
自引率
2.90%
发文量
44
审稿时长
30 weeks
期刊介绍:
SOIL is an international scientific journal dedicated to the publication and discussion of high-quality research in the field of soil system sciences.
SOIL is at the interface between the atmosphere, lithosphere, hydrosphere, and biosphere. SOIL publishes scientific research that contributes to understanding the soil system and its interaction with humans and the entire Earth system. The scope of the journal includes all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (hydrology, agronomy, socio-economics, health sciences, atmospheric sciences, etc.).