Highly hygroscopic needle-punched carbon fiber felt with high evaporative cooling efficiency and fire resistance for safe operation of ultrahigh-rate lithium-ion batteries
IF 11.2 1区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shanchi Wang, Zhiguang Xu, Juan Zhang, Fang Guo, Zhenzhen Wei, Tao Zhang, Yan Zhao
{"title":"Highly hygroscopic needle-punched carbon fiber felt with high evaporative cooling efficiency and fire resistance for safe operation of ultrahigh-rate lithium-ion batteries","authors":"Shanchi Wang, Zhiguang Xu, Juan Zhang, Fang Guo, Zhenzhen Wei, Tao Zhang, Yan Zhao","doi":"10.1016/j.jmst.2024.09.016","DOIUrl":null,"url":null,"abstract":"The effective thermal management of lithium-ion batteries is the key to ensuring their fast charging-discharging, safe and efficient operation. Herein, inspired by transpiration-driven water transport in plants, we report a highly hygroscopic needle-punched carbon fiber felt (HS/CFF) with high evaporative cooling efficiency and fire resistance for the safe operation of lithium-ion batteries working at ultrahigh-rate conditions. The three-dimensional fiber skeleton structure constructed by needle punching in the carbon fiber felt enables effective water transport and storage in HS/CFF, without any water leakage. At an ultra-high discharge rate of 10 C, HS/CFF can reduce the maximum temperature of commercial lithium-ion batteries by 18 °C, and can keep the battery temperature below 60 °C. During 500 cycles of charge-discharge, HS/CFF maintains stable evaporative heat dissipation performance, which helps to improve the safety of lithium-ion batteries and extend their service life. Moreover, HS/CFF remains non-combustible even under exposure to a flame (600-700 °C) for 10 min, and the HS/CFF can be reused after the burning test, with the original excellent heat dissipation effect unchanged. This flexible, fire-resistant cooling material offers a promising avenue for low-energy intelligent thermal management of lithium-ion batteries and other heat-generating electronic devices.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"22 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.09.016","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The effective thermal management of lithium-ion batteries is the key to ensuring their fast charging-discharging, safe and efficient operation. Herein, inspired by transpiration-driven water transport in plants, we report a highly hygroscopic needle-punched carbon fiber felt (HS/CFF) with high evaporative cooling efficiency and fire resistance for the safe operation of lithium-ion batteries working at ultrahigh-rate conditions. The three-dimensional fiber skeleton structure constructed by needle punching in the carbon fiber felt enables effective water transport and storage in HS/CFF, without any water leakage. At an ultra-high discharge rate of 10 C, HS/CFF can reduce the maximum temperature of commercial lithium-ion batteries by 18 °C, and can keep the battery temperature below 60 °C. During 500 cycles of charge-discharge, HS/CFF maintains stable evaporative heat dissipation performance, which helps to improve the safety of lithium-ion batteries and extend their service life. Moreover, HS/CFF remains non-combustible even under exposure to a flame (600-700 °C) for 10 min, and the HS/CFF can be reused after the burning test, with the original excellent heat dissipation effect unchanged. This flexible, fire-resistant cooling material offers a promising avenue for low-energy intelligent thermal management of lithium-ion batteries and other heat-generating electronic devices.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.