Scalability challenges of machine learning models for estimating walking and cycling volumes in large networks

Meead Saberi, Tanapon Lilasathapornkit
{"title":"Scalability challenges of machine learning models for estimating walking and cycling volumes in large networks","authors":"Meead Saberi, Tanapon Lilasathapornkit","doi":"10.1038/s44333-024-00009-1","DOIUrl":null,"url":null,"abstract":"This study explores the scalability of machine learning models for estimating walking and cycling volumes across the extensive New South Wales (NSW) Six Cities Region in Australia using mobile phone and crowdsourced data. Previous research has focused on localized applications, missing the complexities of larger networks. The research addresses this gap by identifying unique challenges such as the scarcity and representativeness of observed count data, gaps in the crowdsourced and mobile phone data, and inconsistencies in link-level volume estimates. We propose and demonstrate the application of strategies like enhancing geographical diversity of observed count data and employing an extensive cross-validation approach in model training and testing. By leveraging various auxiliary datasets, the study demonstrates the effectiveness of these strategies in improving model performance. These findings provide valuable insights for transportation modelers, policymakers, and urban planners, offering a robust framework for supporting sustainable transportation infrastructure and policies with advanced data-driven methodologies.","PeriodicalId":501714,"journal":{"name":"npj Sustainable Mobility and Transport","volume":" ","pages":"1-16"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44333-024-00009-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Sustainable Mobility and Transport","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44333-024-00009-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the scalability of machine learning models for estimating walking and cycling volumes across the extensive New South Wales (NSW) Six Cities Region in Australia using mobile phone and crowdsourced data. Previous research has focused on localized applications, missing the complexities of larger networks. The research addresses this gap by identifying unique challenges such as the scarcity and representativeness of observed count data, gaps in the crowdsourced and mobile phone data, and inconsistencies in link-level volume estimates. We propose and demonstrate the application of strategies like enhancing geographical diversity of observed count data and employing an extensive cross-validation approach in model training and testing. By leveraging various auxiliary datasets, the study demonstrates the effectiveness of these strategies in improving model performance. These findings provide valuable insights for transportation modelers, policymakers, and urban planners, offering a robust framework for supporting sustainable transportation infrastructure and policies with advanced data-driven methodologies.

Abstract Image

用于估算大型网络中步行和骑行量的机器学习模型的可扩展性挑战
本研究利用手机和众包数据,探索机器学习模型的可扩展性,以估算澳大利亚新南威尔士州(NSW)六大城市地区的步行和骑行量。以往的研究侧重于本地化应用,忽略了大型网络的复杂性。本研究通过确定独特的挑战来弥补这一不足,这些挑战包括观察到的计数数据的稀缺性和代表性、众包数据和手机数据中的差距以及链接级交通量估计中的不一致性。我们提出并演示了各种策略的应用,如增强观测计数数据的地理多样性,以及在模型训练和测试中采用广泛的交叉验证方法。通过利用各种辅助数据集,研究证明了这些策略在提高模型性能方面的有效性。这些发现为交通建模人员、政策制定者和城市规划者提供了宝贵的见解,为利用先进的数据驱动方法支持可持续交通基础设施和政策提供了一个强大的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信