Extent of the Magnetotail of Venus From the Solar Orbiter, Parker Solar Probe and BepiColombo Flybys

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Niklas J. T. Edberg, David J. Andrews, J. Jordi Boldú, Andrew P. Dimmock, Yuri V. Khotyaintsev, Konstantin Kim, Moa Persson, Uli Auster, Dragos Constantinescu, Daniel Heyner, Johannes Mieth, Ingo Richter, Shannon M. Curry, Lina Z. Hadid, David Pisa, Luca Sorriso-Valvo, Mark Lester, Beatriz Sánchez-Cano, Katerina Stergiopoulou, Norberto Romanelli, David Fischer, Daniel Schmid, Martin Volwerk
{"title":"Extent of the Magnetotail of Venus From the Solar Orbiter, Parker Solar Probe and BepiColombo Flybys","authors":"Niklas J. T. Edberg,&nbsp;David J. Andrews,&nbsp;J. Jordi Boldú,&nbsp;Andrew P. Dimmock,&nbsp;Yuri V. Khotyaintsev,&nbsp;Konstantin Kim,&nbsp;Moa Persson,&nbsp;Uli Auster,&nbsp;Dragos Constantinescu,&nbsp;Daniel Heyner,&nbsp;Johannes Mieth,&nbsp;Ingo Richter,&nbsp;Shannon M. Curry,&nbsp;Lina Z. Hadid,&nbsp;David Pisa,&nbsp;Luca Sorriso-Valvo,&nbsp;Mark Lester,&nbsp;Beatriz Sánchez-Cano,&nbsp;Katerina Stergiopoulou,&nbsp;Norberto Romanelli,&nbsp;David Fischer,&nbsp;Daniel Schmid,&nbsp;Martin Volwerk","doi":"10.1029/2024JA032603","DOIUrl":null,"url":null,"abstract":"<p>We analyze data from multiple flybys by the Solar Orbiter, BepiColombo, and Parker Solar Probe (PSP) missions to study the interaction between Venus' plasma environment and the solar wind forming the induced magnetosphere. Through examination of magnetic field and plasma density signatures we characterize the spatial extent and dynamics of Venus' magnetotail, focusing mainly on boundary crossings. Notably, we observe significant differences in boundary crossing location and appearance between flybys, highlighting the dynamic nature of Venus' magnetotail. In particular, during Solar Orbiter's third flyby, extreme solar wind conditions led to significant variations in the magnetosheath plasma density and magnetic field properties, but the increased dynamic pressure did not compress the magnetotail. Instead, it is possible that the increased EUV flux at this time rather caused it to expand in size. Key findings also include the identification of several far downstream bow shock (BS), or bow wave, crossings to at least 60 <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mi>V</mi>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{R}}_{V}$</annotation>\n </semantics></math> (1 <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mi>V</mi>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{R}}_{V}$</annotation>\n </semantics></math> = 6,052 km is the radius of Venus), and the induced magnetospheric boundary to at least <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math> 20 <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mi>V</mi>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{R}}_{V}$</annotation>\n </semantics></math>. These crossings provide insight into the extent of the induced magnetosphere. Pre-existing models from Venus Express were only constrained to within <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math> 5 <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mi>V</mi>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{R}}_{V}$</annotation>\n </semantics></math> of the planet, and we provide modifications to better fit the far-downstream crossings. The new model BS is now significantly closer to the central tail than previously suggested, by about 10 <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mi>V</mi>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{R}}_{V}$</annotation>\n </semantics></math> at 60 <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mi>V</mi>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{R}}_{V}$</annotation>\n </semantics></math> downstream.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"129 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032603","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze data from multiple flybys by the Solar Orbiter, BepiColombo, and Parker Solar Probe (PSP) missions to study the interaction between Venus' plasma environment and the solar wind forming the induced magnetosphere. Through examination of magnetic field and plasma density signatures we characterize the spatial extent and dynamics of Venus' magnetotail, focusing mainly on boundary crossings. Notably, we observe significant differences in boundary crossing location and appearance between flybys, highlighting the dynamic nature of Venus' magnetotail. In particular, during Solar Orbiter's third flyby, extreme solar wind conditions led to significant variations in the magnetosheath plasma density and magnetic field properties, but the increased dynamic pressure did not compress the magnetotail. Instead, it is possible that the increased EUV flux at this time rather caused it to expand in size. Key findings also include the identification of several far downstream bow shock (BS), or bow wave, crossings to at least 60 R V ${\mathrm{R}}_{V}$ (1 R V ${\mathrm{R}}_{V}$  = 6,052 km is the radius of Venus), and the induced magnetospheric boundary to at least ${\sim} $ 20 R V ${\mathrm{R}}_{V}$ . These crossings provide insight into the extent of the induced magnetosphere. Pre-existing models from Venus Express were only constrained to within ${\sim} $ 5 R V ${\mathrm{R}}_{V}$ of the planet, and we provide modifications to better fit the far-downstream crossings. The new model BS is now significantly closer to the central tail than previously suggested, by about 10 R V ${\mathrm{R}}_{V}$ at 60 R V ${\mathrm{R}}_{V}$ downstream.

从太阳轨道器、帕克太阳探测器和贝皮-科伦坡飞越图看金星磁尾的范围
我们分析了太阳轨道器、BepiColombo 和帕克太阳探测器(PSP)任务多次飞越金星的数据,以研究金星等离子环境与形成诱导磁层的太阳风之间的相互作用。通过研究磁场和等离子体密度特征,我们描述了金星磁尾的空间范围和动态特征,主要侧重于边界交叉点。值得注意的是,我们观察到不同飞越的边界交叉位置和外观存在显著差异,凸显了金星磁尾的动态性质。特别是在太阳轨道器第三次飞越期间,极端的太阳风条件导致磁鞘等离子体密度和磁场特性发生了显著变化,但增加的动态压力并没有压缩磁尾。相反,此时增加的超紫外线通量可能反而导致了磁尾尺寸的扩大。主要发现还包括确定了几个远下游的弓形冲击(BS)或弓形波,其交叉点至少达到 60 R V ${\mathrm{R}}_{V}$ (1 R V ${\mathrm{R}}_{V}$ = 6,052 km 是金星的半径),诱导磁层边界至少达到 ∼ ${\sim} $ 20 R V ${\mathrm{R}}_{V}$ 。这些交叉提供了对诱导磁层范围的深入了解。来自金星快车的现有模型只限制在行星的 ∼ ${\sim} $ 5 R V ${mathrm{R}}_{V}$ 范围内,我们对其进行了修改,以更好地适应远下游的交叉。现在,新的模型BS比之前提出的要更接近中心尾部,在下游60 R V ${\mathrm{R}}_{V}$ 处大约接近了10 R V ${\mathrm{R}}_{V}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信