Small-scale distribution of linear patterns of primes

IF 1 2区 数学 Q1 MATHEMATICS
Mayank Pandey, Katharine Woo
{"title":"Small-scale distribution of linear patterns of primes","authors":"Mayank Pandey,&nbsp;Katharine Woo","doi":"10.1112/jlms.13001","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>Ψ</mi>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>ψ</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mi>⋯</mi>\n <mo>,</mo>\n <msub>\n <mi>ψ</mi>\n <mi>t</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>:</mo>\n <mo>`</mo>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n <mo>→</mo>\n <msup>\n <mi>R</mi>\n <mi>t</mi>\n </msup>\n </mrow>\n <annotation>$\\Psi =(\\psi _1,\\hdots, \\psi _t):`\\mathbb {Z}^d\\rightarrow \\mathbb {R}^t$</annotation>\n </semantics></math> be a system of linear forms with finite complexity. In their seminal paper, Green and Tao showed the following prime number theorem for values of the system <span></span><math>\n <semantics>\n <mi>Ψ</mi>\n <annotation>$\\Psi$</annotation>\n </semantics></math>:\n\n </p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.13001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.13001","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let Ψ = ( ψ 1 , , ψ t ) : ` Z d R t $\Psi =(\psi _1,\hdots, \psi _t):`\mathbb {Z}^d\rightarrow \mathbb {R}^t$ be a system of linear forms with finite complexity. In their seminal paper, Green and Tao showed the following prime number theorem for values of the system Ψ $\Psi$ :

素数线性模式的小范围分布
让 Ψ = ( ψ 1 , ⋯ , ψ t ) : ` Z d → R t $\Psi =(\psi _1,\hdots, \psi _t):`\mathbb {Z}^d\rightarrow \mathbb {R}^t$ 是一个具有有限复杂性的线性形式系统。格林和陶在他们的开创性论文中证明了系统Ψ $\Psi$ 值的以下素数定理:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信