Alireza Jabbarnejad, Sadegh Vaez-Zadeh, Mohammad Khalilzadeh
{"title":"Parameter-free predictive control with flexibility in power adjustment for grid-connected converters under unbalanced grid conditions","authors":"Alireza Jabbarnejad, Sadegh Vaez-Zadeh, Mohammad Khalilzadeh","doi":"10.1049/pel2.12721","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a novel finite control set predictive direct power control method for grid-connected converters without cost function evaluations. Unlike conventional predictive direct power control, since the proposed method does not use the model parameters, their uncertainties do not cause prediction error and inappropriate voltage vector selection. The method employs a new form of voltage vector selection based on the slopes of active and reactive powers. The slopes are predicted in a manner with a low sensitivity to sampling noise, without updating a look-up table, and recursive methods. Hence, there are no stagnation and convergence issues. Also, the proposed method avoids startup problems caused by data-lacking due to directly regulating the active and reactive power by a switching logic. Flexible power oscillations control with balanced sinusoidal grid currents without any signal sequence extraction can also be achieved under this method in unbalanced grid conditions. The proposed method is assessed by both simulation and experimental studies, and its performance is compared with existing robust combined and model predictive control methods. The outcomes highlight the influence of the proposed approach and establish its superiority over the other considered methods.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12721","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12721","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a novel finite control set predictive direct power control method for grid-connected converters without cost function evaluations. Unlike conventional predictive direct power control, since the proposed method does not use the model parameters, their uncertainties do not cause prediction error and inappropriate voltage vector selection. The method employs a new form of voltage vector selection based on the slopes of active and reactive powers. The slopes are predicted in a manner with a low sensitivity to sampling noise, without updating a look-up table, and recursive methods. Hence, there are no stagnation and convergence issues. Also, the proposed method avoids startup problems caused by data-lacking due to directly regulating the active and reactive power by a switching logic. Flexible power oscillations control with balanced sinusoidal grid currents without any signal sequence extraction can also be achieved under this method in unbalanced grid conditions. The proposed method is assessed by both simulation and experimental studies, and its performance is compared with existing robust combined and model predictive control methods. The outcomes highlight the influence of the proposed approach and establish its superiority over the other considered methods.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.