{"title":"Simulation modeling of wafer grinding surface roughness considering grinding vibration","authors":"Meng Li, Xianglong Zhu, Renke Kang, Jiasheng Li, Jiahui Xu, Tianyu Li","doi":"10.1016/j.precisioneng.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>When using the workpiece rotation method to grind wafers, the grinding end vibration will deteriorate the surface roughness of the wafers. To study the impact law of vibration on the surface roughness of wafers during the grinding procedure, this paper presents a new approach to simulate and model the surface roughness of wafer grinding considering the grinding vibration. Firstly, the dynamics model under the consideration of grinding force was established for the grinding end of the grinding wheel and workpiece turntable. Secondly, using the iterative method to solve the dynamic equations that have been established, the vibration equation is obtained by fitting the displacement vibration curve of the end. Then, by reconstructing the surface grain of the gear teeth, a simulation model of wafer grinding surface roughness was established considering material removal, grain motion and grinding vibration. And then the grinding comparison test was conducted to compare the simulation and test surface roughness measurement results. The maximum deviation of the surface roughness Sz and Sa was 7.7 % and 5.4 %, respectively. The results indicate the accuracy of the modeling. Finally, based on the established wafer roughness model, explore the impact of vibration on wafer roughness during the grinding procedure. This model provides a reference for the research of wafer precision grinding technology.</div></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"91 ","pages":"Pages 278-289"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635924001946","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
When using the workpiece rotation method to grind wafers, the grinding end vibration will deteriorate the surface roughness of the wafers. To study the impact law of vibration on the surface roughness of wafers during the grinding procedure, this paper presents a new approach to simulate and model the surface roughness of wafer grinding considering the grinding vibration. Firstly, the dynamics model under the consideration of grinding force was established for the grinding end of the grinding wheel and workpiece turntable. Secondly, using the iterative method to solve the dynamic equations that have been established, the vibration equation is obtained by fitting the displacement vibration curve of the end. Then, by reconstructing the surface grain of the gear teeth, a simulation model of wafer grinding surface roughness was established considering material removal, grain motion and grinding vibration. And then the grinding comparison test was conducted to compare the simulation and test surface roughness measurement results. The maximum deviation of the surface roughness Sz and Sa was 7.7 % and 5.4 %, respectively. The results indicate the accuracy of the modeling. Finally, based on the established wafer roughness model, explore the impact of vibration on wafer roughness during the grinding procedure. This model provides a reference for the research of wafer precision grinding technology.
期刊介绍:
Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.