Enhancing the overturning resistance capacity of high aspect ratio structure through hybrid base isolation and inter-storey isolation

IF 4.2 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL
{"title":"Enhancing the overturning resistance capacity of high aspect ratio structure through hybrid base isolation and inter-storey isolation","authors":"","doi":"10.1016/j.soildyn.2024.108993","DOIUrl":null,"url":null,"abstract":"<div><div>The high-aspect ratio of structures is usually limited to a small range for base isolation (BI), due to the necessity of ensuring resistance to overturning. This limitation restricts the application of friction pendulum bearings (FPBs) in structures with large high-aspect ratios. This article aims to explore the application of hybrid base isolation and inter-storey isolation (BIISI) in structures with large high-aspect ratio. The theoretical basis of the BIISI was first analyzed in terms of overturning resistance. Subsequently, nonlinear dynamic numerical simulations were conducted on a building with a high aspect ratio to simulate its response subjected to typical pulse-type and non-pulse-type earthquakes. The overturning resistance of the structure and seismic dynamic responses were evaluated. A series of parametric studies were also conducted to investigate the effects of FPB properties, peak ground acceleration (PGA), the friction coefficient ratio and the radius of FPBs between inter-storey isolation storey and base isolation storey on the overturning resistance performance of isolated structures. It is demonstrated that superstructure is meticulously partitioned into two independent sliding structural elements through the BIISI, and it can significantly improve the overturning resistance of buildings with a large high-aspect ratio. PGA and FPB properties show significant differences, but the friction coefficient ratio and the radius of FPBs between the inter-storey isolation storey and base isolation storey show limited influences on the overturning resistance of the structure.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726124005451","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The high-aspect ratio of structures is usually limited to a small range for base isolation (BI), due to the necessity of ensuring resistance to overturning. This limitation restricts the application of friction pendulum bearings (FPBs) in structures with large high-aspect ratios. This article aims to explore the application of hybrid base isolation and inter-storey isolation (BIISI) in structures with large high-aspect ratio. The theoretical basis of the BIISI was first analyzed in terms of overturning resistance. Subsequently, nonlinear dynamic numerical simulations were conducted on a building with a high aspect ratio to simulate its response subjected to typical pulse-type and non-pulse-type earthquakes. The overturning resistance of the structure and seismic dynamic responses were evaluated. A series of parametric studies were also conducted to investigate the effects of FPB properties, peak ground acceleration (PGA), the friction coefficient ratio and the radius of FPBs between inter-storey isolation storey and base isolation storey on the overturning resistance performance of isolated structures. It is demonstrated that superstructure is meticulously partitioned into two independent sliding structural elements through the BIISI, and it can significantly improve the overturning resistance of buildings with a large high-aspect ratio. PGA and FPB properties show significant differences, but the friction coefficient ratio and the radius of FPBs between the inter-storey isolation storey and base isolation storey show limited influences on the overturning resistance of the structure.
通过混合基座隔震和层间隔震提高高宽比结构的抗倾覆能力
由于必须确保抗倾覆能力,结构的高宽比通常被限制在较小的基底隔离(BI)范围内。这一局限性限制了摩擦摆支座(FPB)在大高宽比结构中的应用。本文旨在探讨大高宽比结构中混合基底隔震和层间隔震(BIISI)的应用。首先从抗倾覆性方面分析了 BIISI 的理论基础。随后,对一栋高宽比建筑进行了非线性动态数值模拟,以模拟其在典型脉冲型和非脉冲型地震中的响应。对结构的抗倾覆能力和地震动力响应进行了评估。此外,还进行了一系列参数研究,以探讨 FPB 特性、峰值地面加速度(PGA)、摩擦系数比以及层间隔震层和底层隔震层之间 FPB 的半径对隔震结构抗倾覆性能的影响。结果表明,通过 BIISI 将上部结构细致地划分为两个独立的滑动结构单元,可显著提高高宽比建筑的抗倾覆性能。PGA 和 FPB 的性能差异显著,但层间隔离层和底层隔离层之间的摩擦系数比和 FPB 半径对结构抗倾覆性的影响有限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soil Dynamics and Earthquake Engineering
Soil Dynamics and Earthquake Engineering 工程技术-地球科学综合
CiteScore
7.50
自引率
15.00%
发文量
446
审稿时长
8 months
期刊介绍: The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering. Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信