{"title":"Observation of anomalous excitonic emission in V-doped WS2 QDs synthesized by hydrothermal method and subsequent mechanical exfoliation","authors":"Prarbdh Bhatt, Ashok Kumar Mondal, Nilanjan Halder","doi":"10.1016/j.jlumin.2024.120904","DOIUrl":null,"url":null,"abstract":"<div><div>This study focuses on synthesizing vanadium (V) doped 2H phase WS<sub>2</sub> via a facile hydrothermal method and subsequent liquid phase mechanical exfoliation of the material into QD-like nanostructures. An increment in dopant percentage from 1 % to 7 % red shifted the band gap of WS<sub>2</sub> from 4.15 eV to 3.78 eV. The nanostructures show electronic transition due to B, A, and defect-bound excitons and demonstrate modulation of excitonic behavior with V doping. Low V doping provides the WS<sub>2</sub> material with a reduced B/A excitonic peak intensity ratio because of the nonradiative pathways favoring the relaxation of high energy B excitons to A excitons. High V doping results in anomalous emission behavior marked by an increased B/A ratio, attributed to positive trion formation as a result of excess free hole concentration due to the p-type vanadium. The study suggests that V-doped WS<sub>2</sub> nanostructures hold potential for technological applications, particularly in spintronics and photonics, emphasizing the importance of engineering exciton dynamics in two-dimensional materials using p-type substitutional dopants.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Luminescence","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002223132400468X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on synthesizing vanadium (V) doped 2H phase WS2 via a facile hydrothermal method and subsequent liquid phase mechanical exfoliation of the material into QD-like nanostructures. An increment in dopant percentage from 1 % to 7 % red shifted the band gap of WS2 from 4.15 eV to 3.78 eV. The nanostructures show electronic transition due to B, A, and defect-bound excitons and demonstrate modulation of excitonic behavior with V doping. Low V doping provides the WS2 material with a reduced B/A excitonic peak intensity ratio because of the nonradiative pathways favoring the relaxation of high energy B excitons to A excitons. High V doping results in anomalous emission behavior marked by an increased B/A ratio, attributed to positive trion formation as a result of excess free hole concentration due to the p-type vanadium. The study suggests that V-doped WS2 nanostructures hold potential for technological applications, particularly in spintronics and photonics, emphasizing the importance of engineering exciton dynamics in two-dimensional materials using p-type substitutional dopants.
期刊介绍:
The purpose of the Journal of Luminescence is to provide a means of communication between scientists in different disciplines who share a common interest in the electronic excited states of molecular, ionic and covalent systems, whether crystalline, amorphous, or liquid.
We invite original papers and reviews on such subjects as: exciton and polariton dynamics, dynamics of localized excited states, energy and charge transport in ordered and disordered systems, radiative and non-radiative recombination, relaxation processes, vibronic interactions in electronic excited states, photochemistry in condensed systems, excited state resonance, double resonance, spin dynamics, selective excitation spectroscopy, hole burning, coherent processes in excited states, (e.g. coherent optical transients, photon echoes, transient gratings), multiphoton processes, optical bistability, photochromism, and new techniques for the study of excited states. This list is not intended to be exhaustive. Papers in the traditional areas of optical spectroscopy (absorption, MCD, luminescence, Raman scattering) are welcome. Papers on applications (phosphors, scintillators, electro- and cathodo-luminescence, radiography, bioimaging, solar energy, energy conversion, etc.) are also welcome if they present results of scientific, rather than only technological interest. However, papers containing purely theoretical results, not related to phenomena in the excited states, as well as papers using luminescence spectroscopy to perform routine analytical chemistry or biochemistry procedures, are outside the scope of the journal. Some exceptions will be possible at the discretion of the editors.