New generalization of non-autonomous Bernfeld–Haddock conjecture and its proof

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Chuangxia Huang , Xiaodan Ding
{"title":"New generalization of non-autonomous Bernfeld–Haddock conjecture and its proof","authors":"Chuangxia Huang ,&nbsp;Xiaodan Ding","doi":"10.1016/j.nonrwa.2024.104226","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the famous Bernfeld–Haddock conjecture is generalized to a broader form combining with a class of non-autonomous delay differential equations. With the help of differential inequality technique and Dini derivative theory, it is proved that each solution of the addressed equations has boundedness and tends to a constant without requiring the delay feedback function to be strictly increasing, which greatly refines and extends the corresponding results in the existing literature. In particular, an explanatory example is performed to substantiate the obtained analytical findings.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104226"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001652","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the famous Bernfeld–Haddock conjecture is generalized to a broader form combining with a class of non-autonomous delay differential equations. With the help of differential inequality technique and Dini derivative theory, it is proved that each solution of the addressed equations has boundedness and tends to a constant without requiring the delay feedback function to be strictly increasing, which greatly refines and extends the corresponding results in the existing literature. In particular, an explanatory example is performed to substantiate the obtained analytical findings.
非自治伯恩费尔德-哈道克猜想的新概括及其证明
本文将著名的伯恩费尔德-哈多克猜想推广到更广泛的形式,并与一类非自治延迟微分方程相结合。借助微分不等式技术和迪尼导数理论,证明了所涉及方程的每个解都有界且趋于常数,而不要求延迟反馈函数严格递增,这极大地完善和扩展了现有文献中的相应结果。特别是,通过一个解释性实例来证实所获得的分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信