Boundary rigidity of 3D CAT(0) cube complexes

IF 1 3区 数学 Q1 MATHEMATICS
John Haslegrave , Alex Scott , Youri Tamitegama , Jane Tan
{"title":"Boundary rigidity of 3D CAT(0) cube complexes","authors":"John Haslegrave ,&nbsp;Alex Scott ,&nbsp;Youri Tamitegama ,&nbsp;Jane Tan","doi":"10.1016/j.ejc.2024.104077","DOIUrl":null,"url":null,"abstract":"<div><div>The boundary rigidity problem is a classical question from Riemannian geometry: if <span><math><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow></math></span> is a Riemannian manifold with smooth boundary, is the geometry of <span><math><mi>M</mi></math></span> determined up to isometry by the metric <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> induced on the boundary <span><math><mrow><mi>∂</mi><mi>M</mi></mrow></math></span>? In this paper, we consider a discrete version of this problem: can we determine the combinatorial type of a finite cube complex from its boundary distances? As in the continuous case, reconstruction is not possible in general, but one expects a positive answer under suitable contractibility and non-positive curvature conditions. Indeed, in two dimensions Haslegrave gave a positive answer to this question when the complex is a finite quadrangulation of the disc with no internal vertices of degree less than 4. We prove a 3-dimensional generalisation of this result: the combinatorial type of a finite CAT(0) cube complex with an embedding in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> can be reconstructed from its boundary distances. Additionally, we prove a direct strengthening of Haslegrave’s result: the combinatorial type of any finite 2-dimensional CAT(0) cube complex can be reconstructed from its boundary distances.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104077"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001628","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The boundary rigidity problem is a classical question from Riemannian geometry: if (M,g) is a Riemannian manifold with smooth boundary, is the geometry of M determined up to isometry by the metric dg induced on the boundary M? In this paper, we consider a discrete version of this problem: can we determine the combinatorial type of a finite cube complex from its boundary distances? As in the continuous case, reconstruction is not possible in general, but one expects a positive answer under suitable contractibility and non-positive curvature conditions. Indeed, in two dimensions Haslegrave gave a positive answer to this question when the complex is a finite quadrangulation of the disc with no internal vertices of degree less than 4. We prove a 3-dimensional generalisation of this result: the combinatorial type of a finite CAT(0) cube complex with an embedding in R3 can be reconstructed from its boundary distances. Additionally, we prove a direct strengthening of Haslegrave’s result: the combinatorial type of any finite 2-dimensional CAT(0) cube complex can be reconstructed from its boundary distances.
三维 CAT(0) 立方体复合物的边界刚度
边界刚度问题是黎曼几何中的一个经典问题:如果 (M,g) 是一个具有光滑边界的黎曼流形,那么 M 的几何形状是否由边界 ∂M 上的度量 dg 决定?在本文中,我们将考虑这一问题的离散版本:我们能否根据有限立方体复数的边界距离确定其组合类型?与连续的情况一样,重构在一般情况下是不可能的,但我们期望在适当的收缩性和非正曲率条件下得到肯定的答案。事实上,在二维中,当复数是一个内部顶点度数不小于 4 的有限圆盘四曲面时,哈斯勒格拉夫给出了肯定答案。我们证明了这一结果的三维概括:一个嵌入 R3 的有限 CAT(0) 立方复数的组合类型可以从其边界距离中重建。此外,我们还证明了哈斯勒格拉夫结果的直接强化:任何有限二维 CAT(0) 立方复数的组合类型都可以从其边界距离中重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信