Jiaming Liu , Xi Yang , Bowen Dong , Shichao Liu , Yubo Zhang , Guoqun Zhao , Tongmin Wang , Tingju Li
{"title":"Microstructure evolution and enhanced mechanical properties of CF/Mg composites with optimized fiber/matrix interfacial adhesion","authors":"Jiaming Liu , Xi Yang , Bowen Dong , Shichao Liu , Yubo Zhang , Guoqun Zhao , Tongmin Wang , Tingju Li","doi":"10.1016/j.compositesb.2024.111852","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the optimal carbon fiber/matrix (CF/matrix) interfacial adhesion was explored by tailoring sintering pressures, aiming to enhance the ultimate tensile strength (UTS) of CF/Mg composites. With increasing the pressure, the interfacial shear strength (IFSS) gradually increased from 28.8 MPa to 43.6 MPa. Remarkably enhanced UTS (152 MPa) of the composite was achieved, which was 120.3 % higher than that of the matrix, through optimizing the IFSS to 39.7 MPa. Correspondingly, the main failure mechanism was fiber pulling-out and direct fiber-cutting. Whereas, excessive IFSS (43.6 MPa) deceased the UTS of the composite, with the dominant failure mechanism of direct fiber-cutting.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"287 ","pages":"Article 111852"},"PeriodicalIF":12.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824006644","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the optimal carbon fiber/matrix (CF/matrix) interfacial adhesion was explored by tailoring sintering pressures, aiming to enhance the ultimate tensile strength (UTS) of CF/Mg composites. With increasing the pressure, the interfacial shear strength (IFSS) gradually increased from 28.8 MPa to 43.6 MPa. Remarkably enhanced UTS (152 MPa) of the composite was achieved, which was 120.3 % higher than that of the matrix, through optimizing the IFSS to 39.7 MPa. Correspondingly, the main failure mechanism was fiber pulling-out and direct fiber-cutting. Whereas, excessive IFSS (43.6 MPa) deceased the UTS of the composite, with the dominant failure mechanism of direct fiber-cutting.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.