Prospects of MXene-based nanocomposites: Properties, synthesis techniques, and their applications in electrochemical energy conversion and storage devices
IF 4 3区 材料科学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Prospects of MXene-based nanocomposites: Properties, synthesis techniques, and their applications in electrochemical energy conversion and storage devices","authors":"Asha Raveendran , Mijun Chandran , Ragupathy Dhanusuraman","doi":"10.1016/j.synthmet.2024.117756","DOIUrl":null,"url":null,"abstract":"<div><div>Environmental sustainability and energy availability are among the few challenges faced in the 21st century leading to the need for scalable, efficient and reliable energy storage and conversion systems. Among the renewable energy resources like solar, wind and tidal, electrochemical processes come as promising strategies due to their compatibility and efficiency, which could also address the challenges faced by conventional energy storage and conversion techniques in terms of both economic and environmental aspects. This review delves in the introduction of 2 dimensional material MXene while understanding the properties and synthesis techniques and their various applications in batteries, supercapacitors, fuels cells and electrolysers. It also explores how various MXenes derived from their respective MAX phase precursors acts electrode materials & electrocatalysts and how they influence the electrochemical activity. The review highlights the latest advancements of utilising MXene in upcoming technologies such as Direct Alcohol fuel cell (DAFC), supercapacitors, batteries as well as water electrolysers which have potential for large scale renewable energy storage and conversion applications.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"309 ","pages":"Article 117756"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic Metals","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379677924002182","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Environmental sustainability and energy availability are among the few challenges faced in the 21st century leading to the need for scalable, efficient and reliable energy storage and conversion systems. Among the renewable energy resources like solar, wind and tidal, electrochemical processes come as promising strategies due to their compatibility and efficiency, which could also address the challenges faced by conventional energy storage and conversion techniques in terms of both economic and environmental aspects. This review delves in the introduction of 2 dimensional material MXene while understanding the properties and synthesis techniques and their various applications in batteries, supercapacitors, fuels cells and electrolysers. It also explores how various MXenes derived from their respective MAX phase precursors acts electrode materials & electrocatalysts and how they influence the electrochemical activity. The review highlights the latest advancements of utilising MXene in upcoming technologies such as Direct Alcohol fuel cell (DAFC), supercapacitors, batteries as well as water electrolysers which have potential for large scale renewable energy storage and conversion applications.
期刊介绍:
This journal is an international medium for the rapid publication of original research papers, short communications and subject reviews dealing with research on and applications of electronic polymers and electronic molecular materials including novel carbon architectures. These functional materials have the properties of metals, semiconductors or magnets and are distinguishable from elemental and alloy/binary metals, semiconductors and magnets.