Xu Qi , Beikai Zhao , Jiawei Zou , Yuping Zhao , Jing Gao , Lin Gu , Yiping Lu , Ze Zhang , Qian Yu
{"title":"The deformation mechanism of low symmetric Ti–Pt intermetallic compounds containing high density of planar defects","authors":"Xu Qi , Beikai Zhao , Jiawei Zou , Yuping Zhao , Jing Gao , Lin Gu , Yiping Lu , Ze Zhang , Qian Yu","doi":"10.1016/j.mtsust.2024.100995","DOIUrl":null,"url":null,"abstract":"<div><div>Intermetallic compounds typically exhibit limited plastic deformation capacity due to challenges in activating dislocation slip and deformation twinning, coupled with a lack of alternative deformation mechanisms. Ti–Pt alloys are a prevalent type of intermetallic compound utilized in high-temperature shape memory alloys and as materials for energy applications in electric fields. However, they often exhibit poor deformation capability. Here, we prepared a low-symmetry intermetallic phase, Ti<sub>4</sub>Pt<sub>3</sub>, which demonstrates significant plastic deformation capability. This phase features a high density of parallel planar defects, resulting in an exceptionally large lattice periodicity perpendicular to these defects. Through in-situ scanning electron microscope compression tests, we observed substantial plastic deformation in this new phase. Analysis of the deformed Ti<sub>4</sub>Pt<sub>3</sub> phase revealed that the dense planar defects create uniformly distributed sites of internal stress concentration, enabling a rapid increase in back stress within crystals. This phenomenon leads to notable lattice rotation and localized order-disorder transitions, both crucial mechanisms facilitating plastic deformation and enhancing deformation capacity. Our research underscores the potential of leveraging structural asymmetry to enable unconventional deformation mechanisms, thereby enhancing the plasticity of intermetallic materials.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 100995"},"PeriodicalIF":7.1000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234724003312","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intermetallic compounds typically exhibit limited plastic deformation capacity due to challenges in activating dislocation slip and deformation twinning, coupled with a lack of alternative deformation mechanisms. Ti–Pt alloys are a prevalent type of intermetallic compound utilized in high-temperature shape memory alloys and as materials for energy applications in electric fields. However, they often exhibit poor deformation capability. Here, we prepared a low-symmetry intermetallic phase, Ti4Pt3, which demonstrates significant plastic deformation capability. This phase features a high density of parallel planar defects, resulting in an exceptionally large lattice periodicity perpendicular to these defects. Through in-situ scanning electron microscope compression tests, we observed substantial plastic deformation in this new phase. Analysis of the deformed Ti4Pt3 phase revealed that the dense planar defects create uniformly distributed sites of internal stress concentration, enabling a rapid increase in back stress within crystals. This phenomenon leads to notable lattice rotation and localized order-disorder transitions, both crucial mechanisms facilitating plastic deformation and enhancing deformation capacity. Our research underscores the potential of leveraging structural asymmetry to enable unconventional deformation mechanisms, thereby enhancing the plasticity of intermetallic materials.
期刊介绍:
Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science.
With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.