{"title":"Strain-oxygen vacancies coupling in topotactic (La,Sr)Co3-δ thin films","authors":"","doi":"10.1016/j.apsadv.2024.100644","DOIUrl":null,"url":null,"abstract":"<div><div>Oxygen defect engineering is a widely used approach for tuning physical properties in oxides. Multivalent transition metal oxide La<sub>0.7</sub>Sr<sub>0.3</sub>CoO<sub>3-δ</sub> (LSCO) shows oxygen vacancy-driven metal-to-insulator transition (MIT) due to topotactic phase transition and its high oxygen vacancy tolerance. Here, we introduce strain as a new degree of freedom to study the strain-oxygen vacancy coupling effects and elucidate its impact on the electronic property in oxygen-deficient LSCO epitaxial thin films grown on SrTiO<sub>3</sub> (100) single crystal. By combining the experimental results with density functional theory plus U (DFT+U) calculations, we reveal that 2.1 % <em>in-plane</em> tensile strain can stabilize the insulating state of LSCO with a surprisingly low concentration of oxygen vacancies, <0.5 %. This study reveals that the MIT in LSCO is governed by the combination of oxygen vacancies and strain, offering the potential for additional tuning knob of the material's electronic properties.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523924000722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Oxygen defect engineering is a widely used approach for tuning physical properties in oxides. Multivalent transition metal oxide La0.7Sr0.3CoO3-δ (LSCO) shows oxygen vacancy-driven metal-to-insulator transition (MIT) due to topotactic phase transition and its high oxygen vacancy tolerance. Here, we introduce strain as a new degree of freedom to study the strain-oxygen vacancy coupling effects and elucidate its impact on the electronic property in oxygen-deficient LSCO epitaxial thin films grown on SrTiO3 (100) single crystal. By combining the experimental results with density functional theory plus U (DFT+U) calculations, we reveal that 2.1 % in-plane tensile strain can stabilize the insulating state of LSCO with a surprisingly low concentration of oxygen vacancies, <0.5 %. This study reveals that the MIT in LSCO is governed by the combination of oxygen vacancies and strain, offering the potential for additional tuning knob of the material's electronic properties.