A greedy MOR method for the tracking of eigensolutions to parametric elliptic PDEs

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Moataz Alghamdi , Daniele Boffi , Francesca Bonizzoni
{"title":"A greedy MOR method for the tracking of eigensolutions to parametric elliptic PDEs","authors":"Moataz Alghamdi ,&nbsp;Daniele Boffi ,&nbsp;Francesca Bonizzoni","doi":"10.1016/j.cam.2024.116270","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we introduce a Model Order Reduction (MOR) algorithm based on a sparse grid adaptive refinement, for the approximation of the eigensolutions to parametric problems arising from elliptic partial differential equations. In particular, we are interested in detecting the crossing of the hypersurfaces describing the eigenvalues as a function of the parameters.</div><div>The a priori matching is followed by an a posteriori verification, driven by a suitably defined error indicator. At a given refinement level, a sparse grid approach is adopted for the construction of the grid of the next level, by using the marking given by the a posteriori indicator.</div><div>Various numerical tests confirm the good performance of the scheme.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we introduce a Model Order Reduction (MOR) algorithm based on a sparse grid adaptive refinement, for the approximation of the eigensolutions to parametric problems arising from elliptic partial differential equations. In particular, we are interested in detecting the crossing of the hypersurfaces describing the eigenvalues as a function of the parameters.
The a priori matching is followed by an a posteriori verification, driven by a suitably defined error indicator. At a given refinement level, a sparse grid approach is adopted for the construction of the grid of the next level, by using the marking given by the a posteriori indicator.
Various numerical tests confirm the good performance of the scheme.
用于跟踪参数椭圆 PDEs 特征解的贪婪 MOR 方法
本文介绍了一种基于稀疏网格自适应细化的模型阶次缩减(MOR)算法,用于逼近椭圆偏微分方程参数问题的特征值解。特别是,我们感兴趣的是检测描述特征值的超曲面与参数函数的交叉。先验匹配之后是后验验证,由适当定义的误差指标驱动。在给定的细化级别上,通过使用后验指标给出的标记,采用稀疏网格方法构建下一级别的网格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信