{"title":"“One stone, two birds”: Salt template enabling porosity engineering and single metal atom coordinating toward high-performance zinc-ion capacitors","authors":"","doi":"10.1016/j.jechem.2024.09.016","DOIUrl":null,"url":null,"abstract":"<div><div>Zinc-ion hybrid capacitors (ZIHCs) have received increasing attention as energy storage devices owing to their low cost, high safety, and environmental friendliness. However, their progress has been hampered by low energy and power density, as well as unsatisfactory long-cycle stability, mainly due to the lack of suitable electrode materials. In this context, we have developed manganese single atoms implanted in nitrogen-doped porous carbon nanosheets (MnSAs/NCNs) using a metal salt template method as cathodes for ZIHCs. The metal salt serves a dual purpose in the synthesis process: It facilitates the uniform dispersion of Mn atoms within the carbon matrix and acts as an activating agent to create the porous structure. When applied in ZIHCs, the MnSAs/NCNs electrode demonstrates exceptional performance, including a high capacity of 203 mAh g<sup>−1</sup>, an energy density of 138 Wh kg<sup>−1</sup> at 68 W kg<sup>−1</sup>, and excellent cycle stability with 91% retention over 10,000 cycles. Theoretical calculations indicate that the introduced Mn atoms modulate the local charge distribution of carbon materials, thereby improving the electrochemical property. This work demonstrates the significant potential of carbon materials with metal atoms in zinc-ion hybrid capacitors, not only in enhancing electrochemical performance but also in providing new insights and methods for developing high-performance energy storage devices.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624006387","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
Zinc-ion hybrid capacitors (ZIHCs) have received increasing attention as energy storage devices owing to their low cost, high safety, and environmental friendliness. However, their progress has been hampered by low energy and power density, as well as unsatisfactory long-cycle stability, mainly due to the lack of suitable electrode materials. In this context, we have developed manganese single atoms implanted in nitrogen-doped porous carbon nanosheets (MnSAs/NCNs) using a metal salt template method as cathodes for ZIHCs. The metal salt serves a dual purpose in the synthesis process: It facilitates the uniform dispersion of Mn atoms within the carbon matrix and acts as an activating agent to create the porous structure. When applied in ZIHCs, the MnSAs/NCNs electrode demonstrates exceptional performance, including a high capacity of 203 mAh g−1, an energy density of 138 Wh kg−1 at 68 W kg−1, and excellent cycle stability with 91% retention over 10,000 cycles. Theoretical calculations indicate that the introduced Mn atoms modulate the local charge distribution of carbon materials, thereby improving the electrochemical property. This work demonstrates the significant potential of carbon materials with metal atoms in zinc-ion hybrid capacitors, not only in enhancing electrochemical performance but also in providing new insights and methods for developing high-performance energy storage devices.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy