Yifei Yan , Liming Song , Yunjia Yao , Zhi Tao , Jun Li
{"title":"Experimental study on endwall film cooling performance of an adjustable guide vane","authors":"Yifei Yan , Liming Song , Yunjia Yao , Zhi Tao , Jun Li","doi":"10.1016/j.ijthermalsci.2024.109440","DOIUrl":null,"url":null,"abstract":"<div><div>Variable-geometry turbines are a crucial technology in advanced variable cycle engines, with the inevitable endwall clearance caused by blade rotation being a key concern. While current research primarily focuses on its influence on aerodynamics performance, there is a notable dearth of studies on endwall cooling behaviors. To this end, this article establishes an experimental platform to assess the endwall film cooling characteristics of adjustable guide vanes. Firstly, the film cooling characteristics were compared between traditional fixed guide vanes and adjustable guide vanes with a 0° turning angle under different MFRs (0.5 %, 1.0 %, 1.5 %). Results demonstrate that the adjustable guide vane configuration expands the film coverage on the endwall near the leading and trailing edges under the MFR investigated. This is because the leakage flow caused by clearances transports some coolant into these gaps, effectively suppressing them on the endwall surface, thereby creating a beneficial cooling coverage effect. Subsequently, the influence of turning angles (0°, −1.5°, −3°) on the film cooling characteristics of adjustable guide vanes was further investigated. Results indicate that turning angle exerts minor influences on cooling effectiveness near the LE clearance. However, a slight enhancement in cooling effectiveness near the TE clearance is observed with decreasing turning angles.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"208 ","pages":"Article 109440"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924005623","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Variable-geometry turbines are a crucial technology in advanced variable cycle engines, with the inevitable endwall clearance caused by blade rotation being a key concern. While current research primarily focuses on its influence on aerodynamics performance, there is a notable dearth of studies on endwall cooling behaviors. To this end, this article establishes an experimental platform to assess the endwall film cooling characteristics of adjustable guide vanes. Firstly, the film cooling characteristics were compared between traditional fixed guide vanes and adjustable guide vanes with a 0° turning angle under different MFRs (0.5 %, 1.0 %, 1.5 %). Results demonstrate that the adjustable guide vane configuration expands the film coverage on the endwall near the leading and trailing edges under the MFR investigated. This is because the leakage flow caused by clearances transports some coolant into these gaps, effectively suppressing them on the endwall surface, thereby creating a beneficial cooling coverage effect. Subsequently, the influence of turning angles (0°, −1.5°, −3°) on the film cooling characteristics of adjustable guide vanes was further investigated. Results indicate that turning angle exerts minor influences on cooling effectiveness near the LE clearance. However, a slight enhancement in cooling effectiveness near the TE clearance is observed with decreasing turning angles.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.