{"title":"Global error bound estimates algorithm for an R0-type generalized LCP over polyhedral cone and its applications","authors":"Hongchun Sun , Yiju Wang , Jiakang Du","doi":"10.1016/j.cam.2024.116288","DOIUrl":null,"url":null,"abstract":"<div><div>For the generalized linear complementarity problem over a polyhedral cone (GLCP), by making a characterization of <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-matrix, we derive a necessary and sufficient condition for the boundedness of the level set of the natural residual function of the GLCP, and based on this, we establish a global error bound for the <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo></mrow></math></span>type GLCP. Compared with the existing results, the requirements imposed on the GLCP such as the non-degenerateness of the solution and the full-column rank of the underlying matrix are removed. As an application of the obtained results, we show the global linear convergence of the matrix splitting algorithm for the GLCP. Some numerical experiments are provided to show the validity of the obtained results.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"457 ","pages":"Article 116288"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005363","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
For the generalized linear complementarity problem over a polyhedral cone (GLCP), by making a characterization of -matrix, we derive a necessary and sufficient condition for the boundedness of the level set of the natural residual function of the GLCP, and based on this, we establish a global error bound for the type GLCP. Compared with the existing results, the requirements imposed on the GLCP such as the non-degenerateness of the solution and the full-column rank of the underlying matrix are removed. As an application of the obtained results, we show the global linear convergence of the matrix splitting algorithm for the GLCP. Some numerical experiments are provided to show the validity of the obtained results.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.