{"title":"Effects of transition elements additions on interfacial properties of Al (111)/B4C (0001) interface based on first-principles study","authors":"Yuchi Dai , Jia Liu , Yan Shi","doi":"10.1016/j.jpcs.2024.112360","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the structural stability and adhesion performance of the Al (111)/B<sub>4</sub>C (0001) interface are explored by performing first-principles calculations, as well as the effects of the additions of the transition elements Sc, Zr, and V on the interfacial adhesion work and electron structures are further investigated. The results of interfacial structure calculations demonstrate that the B-terminated interface with FCC site stacking modality is the optimal configuration of the Al (111)/B<sub>4</sub>C (0001) interface. The results of adhesion work and electronic properties indicate that the d orbitals of Sc, Zr, and V elements are hybridized with the p orbital of B to form Sc–B, Zr–B, and V–B bonds, respectively, at the interface, which are more covalent than the Al–B bond. In particular, the hybridization between the d orbital of the V element and the p-orbital of B is more intense. Therefore, the best improvement of the interfacial wettability is obtained by the V element, in which the interfacial adhesion work is enhanced by 41.18 % compared to the undoped interface. A theoretical guide to enhance the wettability and interfacial properties of the Al/B<sub>4</sub>C system by adding transition elements can be provided by our calculations.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"196 ","pages":"Article 112360"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724004955","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the structural stability and adhesion performance of the Al (111)/B4C (0001) interface are explored by performing first-principles calculations, as well as the effects of the additions of the transition elements Sc, Zr, and V on the interfacial adhesion work and electron structures are further investigated. The results of interfacial structure calculations demonstrate that the B-terminated interface with FCC site stacking modality is the optimal configuration of the Al (111)/B4C (0001) interface. The results of adhesion work and electronic properties indicate that the d orbitals of Sc, Zr, and V elements are hybridized with the p orbital of B to form Sc–B, Zr–B, and V–B bonds, respectively, at the interface, which are more covalent than the Al–B bond. In particular, the hybridization between the d orbital of the V element and the p-orbital of B is more intense. Therefore, the best improvement of the interfacial wettability is obtained by the V element, in which the interfacial adhesion work is enhanced by 41.18 % compared to the undoped interface. A theoretical guide to enhance the wettability and interfacial properties of the Al/B4C system by adding transition elements can be provided by our calculations.
本研究通过第一性原理计算探讨了 Al (111)/B4C (0001) 界面的结构稳定性和附着性能,并进一步研究了添加过渡元素 Sc、Zr 和 V 对界面附着功和电子结构的影响。界面结构计算的结果表明,具有 FCC 位点堆积模式的 B 端界面是 Al (111)/B4C (0001) 界面的最佳构型。附着力功和电子特性的结果表明,Sc、Zr 和 V 元素的 d 轨道与 B 的 p 轨道杂化,在界面上分别形成 Sc-B、Zr-B 和 V-B 键,其共价性比 Al-B 键强。尤其是 V 元素的 d 轨道与 B 的 p 轨道之间的杂化更为强烈。因此,V 元素对界面润湿性的改善效果最好,与未掺杂界面相比,界面粘附功提高了 41.18%。我们的计算为通过添加过渡元素来提高 Al/B4C 体系的润湿性和界面特性提供了理论指导。
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.